// // Created by jholder on 21.10.21. // #include "Integratoren2d_force.h" constexpr double kBT = 1.0; using Vector = Eigen::Vector2d; Vector Integratoren2d_force::ortho(Vector e) { return Vector{-e[1], e[0]}; } Eigen::Matrix2d Integratoren2d_force::MatTraf(Vector e) { Eigen::Matrix2d mat; mat << e[0], -e[1], e[1], e[0]; return mat; } void Integratoren2d_force::Set0_deterministic(Rod2d &rod2D, Simulation & /*sim*/) { auto trans_lab = Vector({0, 0.01}); rod2D.setPos(rod2D.getPos() + trans_lab); Eigen::Rotation2D rot(0.1); rod2D.setE(rot * rod2D.getE()); } const Vector Integratoren2d_force::unitVec = {1, 0}; void Integratoren2d_force::Set5_MBD(Rod2d &/*rod2D*/, Simulation &/*sim*/) { } void Integratoren2d_force::Set1_Euler(Rod2d &rod2D, Simulation &sim, const std::function &force, const std::function &torque) { auto std = sim.getSTD(); // sqrt(2*delta_T) //translation Vector rand = {sim.getNorm(std), sim.getNorm(std)}; //gaussian noise Vector trans_part = rod2D.getDiff_Sqrt() * rand; //translation vector in Particle System Vector trans_lab = rod2D.getE_Base_matrix() * trans_part; //Force Vector F_lab = force(rod2D.getPos(), rod2D.getE()); Vector F_part = rod2D.getE_Base_matrix().inverse() * F_lab; Vector F_trans = rod2D.getDiff_Sqrt() * F_part; F_trans *= sim.getMDeltaT() / kBT; //rotation double rot = sim.getNorm(std) * rod2D.getDRot_Sqrt();// rotationsmatrix verwenden. Vector e = rod2D.getE(); double M_rot = torque(rod2D.getPos(), rod2D.getE()) * rod2D.getDRot() / kBT * sim.getMDeltaT(); Vector new_e = e + (rot + M_rot) * ortho(e); new_e.normalize(); //apply rod2D.setPos(rod2D.getPos() + trans_lab + F_trans); rod2D.setE(new_e); } Vector Integratoren2d_force::Heun_predictor_pos(const Rod2d &rod2D, Simulation &sim, const std::function &force) { auto standard_dev = sim.getSTD(); Vector rand_pred = {sim.getNorm(standard_dev), sim.getNorm(standard_dev)}; //gaussian noise Vector trans_pred_part = rod2D.getDiff_Sqrt() * rand_pred; //translation vector in Particle System Vector trans_pred_lab = rod2D.getE_Base_matrix() * trans_pred_part; Vector F_pred_lab = force(rod2D.getPos(), rod2D.getE()); Vector F_pred_part = rod2D.getE_Base_matrix().inverse() * F_pred_lab; Vector F_pred_trans = rod2D.getDiff_Sqrt() * F_pred_part; F_pred_trans *= sim.getMDeltaT() / kBT; return F_pred_trans + trans_pred_lab; } Vector Integratoren2d_force::Heun_predictor_rot(const Rod2d &rod2D, Simulation &sim, const std::function &torque) { auto std = sim.getSTD(); double rot_predict = sim.getNorm(std) * rod2D.getDRot_Sqrt();// rotationsmatrix verwenden. Vector e = rod2D.getE(); double M_predict_rot = torque(rod2D.getPos(), rod2D.getE()) * rod2D.getDRot() / kBT * sim.getMDeltaT(); Vector e_change_predict = (rot_predict + M_predict_rot) * ortho(e); return e_change_predict; } void Integratoren2d_force::Set2_Heun(Rod2d &rod2D, Simulation &sim, const std::function &force, const std::function &torque) { Vector delta_pos_predictor = Heun_predictor_pos(rod2D, sim, force); Vector pos_predictor = rod2D.getPos() + delta_pos_predictor; Vector delta_e_predictor = Heun_predictor_rot(rod2D, sim, torque); Vector e_predict = rod2D.getE() + delta_e_predictor; e_predict.normalize(); Rod2d pred_rod = rod2D; pred_rod.setPos(pos_predictor); pred_rod.setE(e_predict); Vector delta_pos_future = Heun_predictor_pos(pred_rod, sim, force); Vector delta_e_future = Heun_predictor_rot(pred_rod, sim, torque); //integration Vector pos_integrated = 0.5 * rod2D.getPos() + 0.5 * pos_predictor + 0.5 * delta_pos_future; Vector e_integrated = rod2D.getE() + 0.5 * (delta_e_predictor + delta_e_future); //apply rod2D.setPos(pos_integrated); rod2D.setE(e_integrated.normalized()); } void Integratoren2d_force::Set3_Exact(Rod2d &rod2D, Simulation &sim, std::function force, std::function torque) { auto std = sim.getSTD(); // sqrt(2*delta_T) //translation Vector rand = {sim.getNorm(std), sim.getNorm(std)}; //gaussian noise Vector trans_part = rod2D.getDiff_Sqrt() * rand; //translation vector in Particle System Vector F_lab = force(rod2D.getPos(), rod2D.getE()); Vector F_part = rod2D.getE_Base_matrix().inverse() * F_lab; Vector F_trans = rod2D.getDiff_Sqrt() * F_part; F_trans *= sim.getMDeltaT() / kBT; Vector trans_lab = rod2D.getE_Base_matrix() * trans_part; //rotation double rot = sim.getNorm(std) * rod2D.getDRot_Sqrt();// rotationsmatrix verwenden. Vector e = rod2D.getE(); double M_rot = torque(rod2D.getPos(), rod2D.getE()) * rod2D.getDRot() / kBT * sim.getMDeltaT(); auto correction = -0.5 * pow(rod2D.getDRot(), 2) / pow(kBT, 2) * sim.getMDeltaT(); Vector new_e = e + (rot + M_rot) * ortho(e) + correction * e; new_e.normalize(); //apply rod2D.setPos(rod2D.getPos() + trans_lab + F_trans); rod2D.setE(new_e); } void Integratoren2d_force::Set4_BDAS(Rod2d &rod2D, Simulation &sim, std::function force, std::function /*torque*/) { auto std = sim.getSTD(); //translation auto rand = Vector(sim.getNorm(std), sim.getNorm(std)); auto trans_part = rod2D.getDiff_Sqrt() * rand; //translation vector in Particle System Eigen::Rotation2D rotMat(acos(unitVec.dot(rod2D.getE()))); auto trans_lab = rotMat * trans_part; Vector F_lab = force(rod2D.getPos(), rod2D.getE()); Vector F_part = rotMat.inverse() * F_lab; Vector F_trans = rod2D.getDiff_Sqrt() * F_part; F_trans *= sim.getMDeltaT() / kBT; auto rot = Eigen::Rotation2D(sim.getNorm(std) * rod2D.getDRot_Sqrt()); Eigen::Rotation2Dd rotation(rot); auto e_new = (rotation.toRotationMatrix() * rod2D.getE()).normalized(); // Normalisation should not be necessary if a proper angular representation is used. // But with vector e it is done in case of numerical errors rod2D.setPos(rod2D.getPos() + trans_lab); rod2D.setE(e_new); }