diff --git a/clean_python/analysis.py b/clean_python/analysis.py index 119c733..82eecf1 100644 --- a/clean_python/analysis.py +++ b/clean_python/analysis.py @@ -36,7 +36,6 @@ def merge(files): plt.plot(out[2, :], "g") all = sum(merge) - summe = np.max(np.sum(all, axis=0)) all = all / summe @@ -45,7 +44,6 @@ def merge(files): plt.plot(all[2, :], "k") percentage = 1-percentage return percentage, all ->>>>>>> e1a921c2eb7fb8f51d860e28b81ff3a41af21abc def debug(percentage, out): @@ -87,15 +85,10 @@ def time_scale(p, o): mono_perc = mono_perc - np.min(mono_perc) mono_perc /= np.max(mono_perc) -<<<<<<< HEAD - cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1]) - cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1]) -======= # cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1]) # cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1]) cs_rut = ip.interp1d(p[::-1], rut_perc[::-1]) cs_mono = ip.interp1d(p[::-1], mono_perc[::-1]) ->>>>>>> e1a921c2eb7fb8f51d860e28b81ff3a41af21abc plt.figure() ph = np.linspace(0.01, 0.99, 100) @@ -118,6 +111,7 @@ def time_scale(p, o): plt.savefig("timescale.png") plt.savefig("timescale.pdf") + def read_file(file): files = np.load("./merged.npz") p = files["p"] @@ -127,13 +121,8 @@ def read_file(file): if __name__ == "__main__": p, o = merge(sys.argv[1:]) -<<<<<<< HEAD np.savez("merged.npz", p=p, o=o) # eval_data_print(f) stacked_plot(p, o) -======= ->>>>>>> e1a921c2eb7fb8f51d860e28b81ff3a41af21abc - # debug(p, o) - stacked_plot(p, o) time_scale(p, o) plt.show() diff --git a/clean_python/extractors.py b/clean_python/extractors.py index 00e8066..972ed2b 100644 --- a/clean_python/extractors.py +++ b/clean_python/extractors.py @@ -79,8 +79,8 @@ class Rect_Evaluator(Evaluator): new_eval_points = np.arange(len(self.eval_points)) mask = self.mask.copy() for nc, ev_points in zip(new_eval_points, self.eval_points): - maske_low = np.min(ev_points) >= self.mask - maske_high = np.max(ev_points) <= self.mask + maske_low = np.min(ev_points) <= self.mask + maske_high = np.max(ev_points) >= self.mask mask[np.logical_and(maske_high, maske_low)] = nc plt.figure() @@ -103,65 +103,3 @@ class Rect_Evaluator(Evaluator): count += 1 return mask -# -# def main(): -# np.random.seed(10) -# points = (np.random.rand(100, 2)-0.5) * 2 -# voro = Voronoi_Evaluator(points, [[1],[2]]) -# rect = Rect_Evaluator(points, [[1], [2]]) -# Z = np.ones((1000, 1000)) -# img = Image_Wrapper(Z, -5, .01, -5, .01) -# voro.extract(img) -# rect.extract(img) -# -# plt.scatter(points[[1], 0], points[[1], 1]) -# plt.scatter(points[[2], 0], points[[2], 1]) -# plt.imshow(img.img, extent=img.ext(), origin="lower") -# #plt.imshow(img.img, origin="lower") -# plt.show() -# -# -# if __name__ == "__main__": -# main() -# class Voronoi_Evaluator(Evaluator): -# def __init__(self, list_points): -# points = np.concatenate(list_points, axis=0) -# self.eval_points = [] -# start = 0 -# for l in list_points: -# stop = l.shape[0] -# self.eval_points.append(np.arange(start, start + stop)) -# start += stop -# self.vor = Voronoi(points) -# -# @persist_to_file("cache_merge_voro") -# def merge_mask_helper(self): -# new_eval_points = np.arange(len(self.eval_points)) -# mask = self.mask -# for nc, ev_points in zip(new_eval_points, self.eval_points): -# for num in ev_points: -# mask[self.mask == num] = nc -# return mask -# -# @persist_to_file("cache_voro") -# def gen_mask_helper(self, img: Image_Wrapper): -# mask = np.full_like(img.img, -1) -# -# counter = -1 -# region_mask = self.vor.point_region -# for i in np.array(self.vor.regions, dtype=list)[region_mask]: -# counter += 1 -# if -1 in i: -# continue -# if len(i) == 0: -# continue -# pts = self.vor.vertices[i] -# pts = np.stack(img.val2pos( -# pts[:, 0], pts[:, 1])).astype(np.int32).T -# if np.any(pts < 0): -# continue -# mask_2 = np.zeros_like(img.img) -# cv2.fillConvexPoly(mask_2, pts, 1) -# mask_2 = mask_2 > 0 # To convert to Boolean -# mask[mask_2] = counter -# return mask