added evaulation for 2d fft
This commit is contained in:
parent
e6ebd80bc1
commit
3ca11080d7
182
cal.py
182
cal.py
@ -1,12 +1,12 @@
|
||||
import numpy as np
|
||||
from scipy.stats import multivariate_normal
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy
|
||||
import scipy.fftpack as sfft
|
||||
import matplotlib.patches as patches
|
||||
import matplotlib
|
||||
|
||||
|
||||
def deg_2_rad(winkel):
|
||||
return winkel/180.0 * np.pi
|
||||
return winkel / 180.0 * np.pi
|
||||
|
||||
|
||||
# all units in angstrom
|
||||
@ -28,7 +28,6 @@ def mono_2_rutile(c_m, a_m):
|
||||
|
||||
|
||||
class Lattice:
|
||||
|
||||
def _get_rutile(self, X, Y):
|
||||
self.atom_x_rut = X * base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
|
||||
self.atom_y_rut = Y * 0.5 * base_a_r
|
||||
@ -41,8 +40,7 @@ class Lattice:
|
||||
|
||||
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
|
||||
|
||||
self.atom_x_mono = offset_a_r + X * \
|
||||
base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
|
||||
self.atom_x_mono = offset_a_r + X * base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
|
||||
self.atom_x_mono[np.mod(X, 2) == 0] -= 2 * offset_a_r
|
||||
|
||||
self.atom_y_mono = offset_c_r + 0.5 * Y * base_a_r
|
||||
@ -52,15 +50,15 @@ class Lattice:
|
||||
x = np.arange(x_len)
|
||||
y = np.arange(y_len)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
X[np.mod(Y, 4) == 3] = X[np.mod(Y, 4) == 3]-1
|
||||
X[np.mod(Y, 4) == 2] = X[np.mod(Y, 4) == 2]-1
|
||||
X[np.mod(Y, 4) == 3] = X[np.mod(Y, 4) == 3] - 1
|
||||
X[np.mod(Y, 4) == 2] = X[np.mod(Y, 4) == 2] - 1
|
||||
assert np.mod(x.size, 2) == 0
|
||||
assert np.mod(y.size, 2) == 0
|
||||
|
||||
return X, Y
|
||||
|
||||
def __init__(self, x_len: int, y_len: int):
|
||||
X, Y = self._generate_vec(x_len*2, y_len*2)
|
||||
X, Y = self._generate_vec(x_len * 2, y_len * 2)
|
||||
self._get_mono(X, Y)
|
||||
self._get_rutile(X, Y)
|
||||
|
||||
@ -102,6 +100,7 @@ def test_lattice():
|
||||
|
||||
|
||||
RESOLUTION = 0.1
|
||||
CMAP = "Greys"
|
||||
|
||||
|
||||
def image_from_pos(pos_x, pos_y):
|
||||
@ -141,40 +140,175 @@ def gaussian(img):
|
||||
x = np.linspace(-ratio, ratio, img.shape[0])
|
||||
y = np.linspace(-1, 1, img.shape[1])
|
||||
X, Y = np.meshgrid(x, y)
|
||||
sigma = 0.3
|
||||
z = (1/(2*np.pi*sigma*sigma) * np.exp(-(X**2/(2*sigma**2)
|
||||
+ Y**2/(2*sigma**2))))
|
||||
sigma = 0.5
|
||||
z = (
|
||||
1
|
||||
/ (2 * np.pi * sigma * sigma)
|
||||
* np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
|
||||
)
|
||||
return np.multiply(img, z.T)
|
||||
|
||||
|
||||
def padding(array, xx, yy):
|
||||
"""
|
||||
:param array: numpy array
|
||||
:param xx: desired height
|
||||
:param yy: desirex width
|
||||
:return: padded array
|
||||
"""
|
||||
|
||||
h = array.shape[0]
|
||||
w = array.shape[1]
|
||||
|
||||
a = (xx - h) // 2
|
||||
aa = xx - a - h
|
||||
|
||||
b = (yy - w) // 2
|
||||
bb = yy - b - w
|
||||
|
||||
return np.pad(array, pad_width=((a, aa), (b, bb)), mode="constant")
|
||||
|
||||
|
||||
def rect_at_point(x, y, color):
|
||||
length_2 = 0.08
|
||||
rect = patches.Rectangle(
|
||||
(x - length_2, y - length_2),
|
||||
2 * length_2,
|
||||
2 * length_2,
|
||||
linewidth=1,
|
||||
edgecolor=color,
|
||||
facecolor="none",
|
||||
)
|
||||
return rect
|
||||
|
||||
|
||||
def reci_rutile():
|
||||
x = np.arange(-2, 3)
|
||||
y = np.arange(-2, 3)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
|
||||
|
||||
|
||||
def reci_mono():
|
||||
x, y = reci_rutile()
|
||||
return x + 0.1083, y + 0.1719
|
||||
|
||||
|
||||
def draw_big_val_rect(img, x, y, x_index, y_index):
|
||||
length_2 = 0.08
|
||||
pos_x_lower = x - length_2
|
||||
pos_x_upper = x + length_2
|
||||
|
||||
pos_y_lower = y - length_2
|
||||
pos_y_upper = y + length_2
|
||||
x_lower = np.searchsorted(x_index, pos_x_lower)
|
||||
x_upper = np.searchsorted(x_index, pos_x_upper)
|
||||
y_lower = np.searchsorted(y_index, pos_y_lower)
|
||||
y_upper = np.searchsorted(y_index, pos_y_upper)
|
||||
|
||||
img[y_lower:y_upper, x_lower:x_upper] = 1e4
|
||||
return img
|
||||
|
||||
|
||||
def extract_rect(img, x, y, x_index, y_index):
|
||||
length_2 = 0.08
|
||||
|
||||
pos_x_lower = x - length_2
|
||||
pos_x_upper = x + length_2
|
||||
|
||||
pos_y_lower = y - length_2
|
||||
pos_y_upper = y + length_2
|
||||
|
||||
x_lower = np.searchsorted(x_index, pos_x_lower)
|
||||
x_upper = np.searchsorted(x_index, pos_x_upper)
|
||||
|
||||
y_lower = np.searchsorted(y_index, pos_y_lower)
|
||||
y_upper = np.searchsorted(y_index, pos_y_upper)
|
||||
|
||||
return img[y_lower:y_upper, x_lower:x_upper]
|
||||
|
||||
|
||||
def main():
|
||||
FFT_KWARGS = {"norm": matplotlib.colors.LogNorm(vmin=1), "cmap": "Greys"}
|
||||
IMSHOW_WARGS = {"cmap": "Greys"}
|
||||
SIZE = 601
|
||||
|
||||
lat = Lattice(10, 10)
|
||||
maske = np.ones((10, 10), dtype=bool)
|
||||
x, y = lat.get_from_mask(maske)
|
||||
img = image_from_pos(x, y)
|
||||
|
||||
fig, [axs,axs2] = plt.subplots(2, 3)
|
||||
axs[0].imshow(img)
|
||||
img = padding(img, SIZE, SIZE)
|
||||
|
||||
fig, [axs, axs2] = plt.subplots(2, 3)
|
||||
axs[0].imshow(img, **IMSHOW_WARGS)
|
||||
img = gaussian(img)
|
||||
axs[1].imshow(img)
|
||||
plt.pause(.1)
|
||||
axs[1].imshow(img, **IMSHOW_WARGS)
|
||||
plt.pause(0.1)
|
||||
|
||||
freqx, freqy, intens = fft(img)
|
||||
axs[2].imshow(intens, extent = (np.min(freqx), np.max(
|
||||
freqx), np.min(freqy), np.max(freqy)))
|
||||
|
||||
axs[2].imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy)),
|
||||
**FFT_KWARGS,
|
||||
)
|
||||
|
||||
intens_rut = intens
|
||||
maske = np.zeros((10, 10), dtype=bool)
|
||||
x, y = lat.get_from_mask(maske)
|
||||
img = image_from_pos(x, y)
|
||||
img = padding(img, SIZE, SIZE)
|
||||
|
||||
axs2[0].imshow(img)
|
||||
axs2[0].imshow(img, **IMSHOW_WARGS)
|
||||
img = gaussian(img)
|
||||
axs2[1].imshow(img)
|
||||
plt.pause(.1)
|
||||
axs2[1].imshow(img, **IMSHOW_WARGS)
|
||||
plt.pause(0.1)
|
||||
|
||||
freqx, freqy, intens = fft(img)
|
||||
axs2[2].imshow(intens, extent = (np.min(freqx), np.max(
|
||||
freqx), np.min(freqy), np.max(freqy)))
|
||||
axs2[2].imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy)),
|
||||
**FFT_KWARGS,
|
||||
)
|
||||
|
||||
# Create a Rectangle patch
|
||||
# Add the patch to the Axes
|
||||
point_x, point_y = reci_rutile()
|
||||
for px, py in zip(point_x, point_y):
|
||||
rect = rect_at_point(px, py, "r")
|
||||
axs[2].add_patch(rect)
|
||||
axs[2].text(
|
||||
px, py, f"{np.sum(extract_rect(intens_rut, px, py, freqx, freqy)):0.2}"
|
||||
)
|
||||
rect = rect_at_point(px, py, "r")
|
||||
axs2[2].add_patch(rect)
|
||||
axs2[2].text(
|
||||
px, py, f"{np.sum(extract_rect(intens, px, py, freqx, freqy)):0.2}"
|
||||
)
|
||||
|
||||
point_x, point_y = reci_mono()
|
||||
for px, py in zip(point_x, point_y):
|
||||
# rect = rect_at_point(px, py,"b")
|
||||
# axs[2].add_patch(rect)
|
||||
rect = rect_at_point(px, py, "b")
|
||||
axs2[2].add_patch(rect)
|
||||
axs2[2].text(
|
||||
px, py, f"{np.sum(extract_rect(intens, px, py, freqx, freqy)):0.2}"
|
||||
)
|
||||
|
||||
axs[2].set_xlim(-1.0, 1.0)
|
||||
axs[2].set_ylim(-1.0, 1.0)
|
||||
axs2[2].set_xlim(-1.0, 1.0)
|
||||
axs2[2].set_ylim(-1.0, 1.0)
|
||||
|
||||
plt.figure()
|
||||
diff = intens_rut - intens
|
||||
plt.imshow(
|
||||
diff, extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy))
|
||||
)
|
||||
|
||||
plt.xlim(-1.0, 1.0)
|
||||
plt.ylim(-1.0, 1.0)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user