This commit is contained in:
Jacob Holder 2023-02-18 02:06:46 +01:00
parent 57152e4054
commit 524a4f8174
3 changed files with 269 additions and 104 deletions

View File

@ -15,6 +15,8 @@ class Lattice:
def get_from_mask(self, maske):
pass
def reci(self):
pass
class SCC_Lattice(Lattice):
def __init__(self, x_len, y_len):
@ -25,6 +27,12 @@ class SCC_Lattice(Lattice):
def get_from_mask(self, maske):
return self.X, self.Y
def reci(self):
x = np.arange(-3,3) * 0.2
y = np.arange(-3,3) * 0.2
X,Y = np.meshgrid(x, y)
return [(X,Y)]
class VO2_Lattice(Lattice):
base_a_m = 5.75
@ -52,7 +60,7 @@ class VO2_Lattice(Lattice):
offset_a_m = 0.25 - 0.23947
offset_c_m = 0.02646
offset_a_r, offset_c_r = self.mono_2_rutile(offset_c_m, offset_a_m)
offset_a_r, offset_c_r = self._mono_2_rutile(offset_c_m, offset_a_m)
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
@ -95,3 +103,21 @@ class VO2_Lattice(Lattice):
inplace_pos_x[mask] = self.atom_x_mono[mask]
inplace_pos_y[mask] = self.atom_y_mono[mask]
return inplace_pos_x, inplace_pos_y
def reci_rutile(self):
x = np.arange(-2, 3)
y = np.arange(-2, 3)
X, Y = np.meshgrid(x, y)
return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
def reci_mono(self):
x, y = self.reci_rutile()
return x + 0.1083, y + 0.1719
def reci_mono_2(self):
x, y = self.reci_rutile()
return x - 0.1083, y + 0.1719
def reci(self):
return [self.reci_rutile(), self.reci_mono(), self.reci_mono_2()]

View File

@ -1,9 +1,7 @@
from lattices import SCC_Lattice
from lattices import SCC_Lattice, VO2_Lattice
from spin_image import SpinImage
import numpy as np
import matplotlib.pyplot as plt
import scipy.fftpack as sfft
import matplotlib.patches as patches
import matplotlib
import scipy
@ -11,109 +9,89 @@ import scipy.signal
import tqdm
class SpinImage:
resolution = 0.1
class Plotter:
def __init__(self, lat):
self.lattice = lat
def __init__(self, x_pos, y_pos):
self.length_x = np.max(x_pos) + self.resolution
self.length_y = np.max(y_pos) + self.resolution
self.img = self.image_from_pos(x_pos, y_pos)
def reduce(self, arr):
arr = np.array(arr)
arr = arr.flatten()
return np.mean(arr)
# return np.sum(arr[np.argpartition(arr, -8)[-8:]])
def image_from_pos(self, pos_x, pos_y):
x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
img = np.zeros((x_ind.size, y_ind.size))
xind = np.searchsorted(x_ind, pos_x)
yind = np.searchsorted(y_ind, pos_y)
img[xind, yind] = 1
return img
def extract_rect(self, img, x, y, x_index, y_index):
length_2 = 0.01
def fft(self):
Z_fft = sfft.fft2(self.img)
Z_shift = sfft.fftshift(Z_fft)
fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution)
fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution)
fft_freqx_clean = sfft.fftshift(fft_freqx)
fft_freqy_clean = sfft.fftshift(fft_freqy)
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
pos_x_lower = x - length_2
pos_x_upper = x + length_2
def pad_it_square(self, additional_pad=0):
h = self.img.shape[0]
w = self.img.shape[1]
print(h, w)
xx = np.maximum(h, w) + 2 * additional_pad
yy = xx
self.length_x = xx * self.resolution
self.length_y = yy * self.resolution
print("Pad to: ", xx, yy)
pos_y_lower = y - length_2
pos_y_upper = y + length_2
a = (xx - h) // 2
aa = xx - a - h
x_lower = np.searchsorted(x_index, pos_x_lower)
x_upper = np.searchsorted(x_index, pos_x_upper)
b = (yy - w) // 2
bb = yy - b - w
y_lower = np.searchsorted(y_index, pos_y_lower)
y_upper = np.searchsorted(y_index, pos_y_upper)
self.img = np.pad(self.img, pad_width=(
(a, aa), (b, bb)), mode="constant")
# fix different number of spins possible
if x_upper - x_lower < 10:
x_upper += 1
if y_upper - y_lower < 10:
y_upper += 1
return img[y_lower:y_upper, x_lower:x_upper]
def gaussian(self, sigma):
x = np.arange(-self.length_x/2,
self.length_x/2, self.resolution)
y = np.arange(-self.length_y/2,
self.length_y/2, self.resolution)
X, Y = np.meshgrid(x, y)
z = (
1 / (2 * np.pi * sigma * sigma)
* np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
def helper(self, ax, freqx, freqy, intens):
reci_lattice = self.lattice.reci()
for tup, col in zip(reci_lattice, ["r", "b", "g"]):
point_x, point_y = tup
point_x = point_x.flatten()
point_y = point_y.flatten()
for px, py in zip(point_x, point_y):
rect = self.rect_at_point(px, py, col)
ax.add_patch(rect)
sum = self.extract_rect(intens, px, py, freqx, freqy)
ax.text(
px, py, f"{self.reduce(sum):2.2}", clip_on=True
)
return intens
def rect_at_point(self, x, y, color):
length_2 = 0.01
rect = patches.Rectangle(
(x - length_2, y - length_2),
2 * length_2,
2 * length_2,
linewidth=1,
edgecolor=color,
facecolor="none",
)
self.img = np.multiply(self.img, z.T)
return rect
def plot(self, ax, scale=None):
if scale is None:
ax.imshow(self.img)
else:
quad = np.ones((int(scale/self.resolution),
int(scale/self.resolution)))
img = scipy.signal.convolve2d(self.img, quad)
ax.imshow(img)
def blur(self, sigma):
self.img = scipy.ndimage.gaussian_filter(self.img, sigma)
def plot(freqx, freqy, intens, ax_log=None, ax_lin=None):
#point_x, point_y = reci_rutile()
# for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py, "r")
# ax.add_patch(rect)
# ax.text(
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
# )
#point_x, point_y = reci_mono()
# for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py, "b")
# ax.add_patch(rect)
# ax.text(
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
# )
if ax_log:
t = ax_log.imshow(
intens,
extent=(np.min(freqx), np.max(freqx),
np.min(freqy), np.max(freqy)),
norm=matplotlib.colors.LogNorm(),
cmap="viridis"
)
plt.colorbar(t)
if ax_lin:
t = ax_lin.imshow(
intens,
extent=(np.min(freqx), np.max(freqx),
np.min(freqy), np.max(freqy)),
cmap="viridis"
)
plt.colorbar(t)
def plot(self, freqx, freqy, intens, ax_log=None, ax_lin=None, vmax=None):
if ax_log:
intens = self.helper(ax_lin, freqx, freqy, intens)
t = ax_log.imshow(
intens,
extent=(np.min(freqx), np.max(freqx),
np.min(freqy), np.max(freqy)),
norm=matplotlib.colors.LogNorm(vmin=10, vmax=vmax),
cmap="viridis",
origin="lower"
)
plt.colorbar(t, ax=ax_log)
self.helper(ax_log, freqx, freqy, intens)
if ax_lin:
intens = self.helper(ax_lin, freqx, freqy, intens)
t = ax_lin.imshow(
intens,
extent=(np.min(freqx), np.max(freqx),
np.min(freqy), np.max(freqy)),
vmax=vmax,
cmap="viridis",
origin="lower"
)
plt.colorbar(t, ax=ax_lin)
def rotate(x, y, angle):
@ -122,27 +100,114 @@ def rotate(x, y, angle):
def test_square():
lat = SCC_Lattice(40, 40)
pos_x, pos_y = lat.get_from_mask(None)
pos_x, pos_y = rotate(pos_x, pos_y,30)
LEN = 40
#lat = SCC_Lattice(LEN, LEN)
lat = VO2_Lattice(LEN, LEN)
plot = Plotter(lat)
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
#pos_x, pos_y = rotate(pos_x, pos_y, 30)
si = SpinImage(pos_x, pos_y)
fig, axs = plt.subplots(2, 2)
si.pad_it_square(10)
si.plot(axs[0, 0], 2)
si.gaussian(300)
# si.gaussian(LEN)
# si.blur(3)
si.plot(axs[0, 1], 2)
plt.pause(0.1)
fx, fy, intens = si.fft()
plot(fx, fy, intens, axs[1, 0], axs[1, 1])
plot.plot(fx, fy, intens, axs[1, 0], axs[1, 1])
print("Done")
plt.savefig("test.png")
plt.show()
def test_mixed():
LEN = 40
lat = VO2_Lattice(LEN, LEN)
plot = Plotter(lat)
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
si = SpinImage(pos_x, pos_y)
si.pad_it_square(10)
fx, fy, intens_rutile = si.fft()
pos_x, pos_y = lat.get_from_mask(np.ones((40, 40)))
si = SpinImage(pos_x, pos_y)
si.pad_it_square(10)
fx, fy, intens_mono = si.fft()
mask_misk = np.ones((40, 40))
ind = np.arange(mask_misk.size)
np.random.shuffle(ind)
mask_misk[np.unravel_index(ind[:800], (40, 40))] = False
pos_x, pos_y = lat.get_from_mask(mask_misk)
si = SpinImage(pos_x, pos_y)
si.pad_it_square(10)
fx, fy, intens_mixed = si.fft()
fig, axs = plt.subplots(2, 3)
plot.plot(freqx=fx, freqy=fy, intens=intens_rutile,
ax_log=axs[0, 0], ax_lin=axs[1, 0], vmax=10e7)
plot.plot(freqx=fx, freqy=fy, intens=intens_mono,
ax_log=axs[0, 2], ax_lin=axs[1, 2], vmax=10e7)
plot.plot(freqx=fx, freqy=fy, intens=intens_mixed,
ax_log=axs[0, 1], ax_lin=axs[1, 1], vmax=10e7)
print(np.sum(intens_mono), np.sum(intens_rutile), np.sum(intens_mixed))
for ax in axs.flatten():
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
plt.show()
def random():
LEN = 40
lat = VO2_Lattice(LEN, LEN)
plot = Plotter(lat)
maske = np.zeros((LEN, LEN))
ind = np.arange(LEN * LEN)
np.random.shuffle(ind)
reci_lattice = lat.reci()
out = [[] for x in range(len(reci_lattice))]
percentage = []
counter = 0
for i in tqdm.tqdm(ind):
maske[np.unravel_index(i, (LEN, LEN))] = True
counter += 1
if np.mod(counter, 20) != 0:
continue
pos_x, pos_y = lat.get_from_mask(maske)
si = SpinImage(pos_x, pos_y)
si.pad_it_square(10)
si.gaussian(LEN)
fx, fy, intens = si.fft()
for tup, lis in zip(reci_lattice, out):
point_x, point_y = tup
point_x = point_x.flatten()
point_y = point_y.flatten()
sum = 0.
for px, py in zip(point_x, point_y):
sum += np.sum(plot.extract_rect(intens, px, py, fx, fy))
lis.append(sum)
percentage.append(np.mean(maske))
for o in out:
plt.scatter(percentage, o/o[0])
plt.plot([0,1], [o[0], o[-1]])
plt.show()
if __name__ == "__main__":
test_square()
# test_square()
# test_mixed()
random()
# def test_lattice():
# lat = VO2_Lattice(10, 10)
# maske = np.zeros((10, 10), dtype=bool)

74
2d_fourie/spin_image.py Normal file
View File

@ -0,0 +1,74 @@
import numpy as np
import scipy.fftpack as sfft
class SpinImage:
resolution = 0.1
def __init__(self, x_pos, y_pos):
x_pos = x_pos - np.min(x_pos)
y_pos = y_pos - np.min(y_pos)
self.length_x = np.max(x_pos) + self.resolution
self.length_y = np.max(y_pos) + self.resolution
self.img = self.image_from_pos(x_pos, y_pos)
def image_from_pos(self, pos_x, pos_y):
x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
img = np.zeros((x_ind.size, y_ind.size))
xind = np.searchsorted(x_ind, pos_x)
yind = np.searchsorted(y_ind, pos_y)
img[xind, yind] = 1
return img
def fft(self):
Z_fft = sfft.fft2(self.img)
Z_shift = sfft.fftshift(Z_fft)
fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution)
fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution)
fft_freqx_clean = sfft.fftshift(fft_freqx)
fft_freqy_clean = sfft.fftshift(fft_freqy)
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
def pad_it_square(self, additional_pad=0):
h = self.img.shape[0]
w = self.img.shape[1]
print(h, w)
xx = np.maximum(h, w) + 2 * additional_pad
yy = xx
self.length_x = xx * self.resolution
self.length_y = yy * self.resolution
print("Pad to: ", xx, yy)
a = (xx - h) // 2
aa = xx - a - h
b = (yy - w) // 2
bb = yy - b - w
self.img = np.pad(self.img, pad_width=(
(a, aa), (b, bb)), mode="constant")
def gaussian(self, sigma):
x = np.arange(-self.length_x / 2,
self.length_x / 2, self.resolution)
y = np.arange(-self.length_y / 2,
self.length_y / 2, self.resolution)
X, Y = np.meshgrid(x, y)
z = (
1 / (2 * np.pi * sigma * sigma)
* np.exp(-(X ** 2 / (2 * sigma ** 2) + Y ** 2 / (2 * sigma ** 2)))
)
self.img = np.multiply(self.img, z.T)
def plot(self, ax, scale=None):
if scale is None:
ax.imshow(self.img)
else:
quad = np.ones((int(scale / self.resolution),
int(scale / self.resolution)))
img = scipy.signal.convolve2d(self.img, quad)
ax.imshow(img)
def blur(self, sigma):
self.img = scipy.ndimage.gaussian_filter(self.img, sigma)