2d test
This commit is contained in:
parent
57152e4054
commit
524a4f8174
@ -15,6 +15,8 @@ class Lattice:
|
||||
def get_from_mask(self, maske):
|
||||
pass
|
||||
|
||||
def reci(self):
|
||||
pass
|
||||
|
||||
class SCC_Lattice(Lattice):
|
||||
def __init__(self, x_len, y_len):
|
||||
@ -25,6 +27,12 @@ class SCC_Lattice(Lattice):
|
||||
def get_from_mask(self, maske):
|
||||
return self.X, self.Y
|
||||
|
||||
def reci(self):
|
||||
x = np.arange(-3,3) * 0.2
|
||||
y = np.arange(-3,3) * 0.2
|
||||
X,Y = np.meshgrid(x, y)
|
||||
return [(X,Y)]
|
||||
|
||||
|
||||
class VO2_Lattice(Lattice):
|
||||
base_a_m = 5.75
|
||||
@ -52,7 +60,7 @@ class VO2_Lattice(Lattice):
|
||||
offset_a_m = 0.25 - 0.23947
|
||||
offset_c_m = 0.02646
|
||||
|
||||
offset_a_r, offset_c_r = self.mono_2_rutile(offset_c_m, offset_a_m)
|
||||
offset_a_r, offset_c_r = self._mono_2_rutile(offset_c_m, offset_a_m)
|
||||
|
||||
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
|
||||
|
||||
@ -95,3 +103,21 @@ class VO2_Lattice(Lattice):
|
||||
inplace_pos_x[mask] = self.atom_x_mono[mask]
|
||||
inplace_pos_y[mask] = self.atom_y_mono[mask]
|
||||
return inplace_pos_x, inplace_pos_y
|
||||
|
||||
def reci_rutile(self):
|
||||
x = np.arange(-2, 3)
|
||||
y = np.arange(-2, 3)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
|
||||
|
||||
|
||||
def reci_mono(self):
|
||||
x, y = self.reci_rutile()
|
||||
return x + 0.1083, y + 0.1719
|
||||
|
||||
def reci_mono_2(self):
|
||||
x, y = self.reci_rutile()
|
||||
return x - 0.1083, y + 0.1719
|
||||
|
||||
def reci(self):
|
||||
return [self.reci_rutile(), self.reci_mono(), self.reci_mono_2()]
|
@ -1,9 +1,7 @@
|
||||
from lattices import SCC_Lattice
|
||||
|
||||
|
||||
from lattices import SCC_Lattice, VO2_Lattice
|
||||
from spin_image import SpinImage
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.fftpack as sfft
|
||||
import matplotlib.patches as patches
|
||||
import matplotlib
|
||||
import scipy
|
||||
@ -11,109 +9,89 @@ import scipy.signal
|
||||
import tqdm
|
||||
|
||||
|
||||
class SpinImage:
|
||||
resolution = 0.1
|
||||
class Plotter:
|
||||
def __init__(self, lat):
|
||||
self.lattice = lat
|
||||
|
||||
def __init__(self, x_pos, y_pos):
|
||||
self.length_x = np.max(x_pos) + self.resolution
|
||||
self.length_y = np.max(y_pos) + self.resolution
|
||||
self.img = self.image_from_pos(x_pos, y_pos)
|
||||
def reduce(self, arr):
|
||||
arr = np.array(arr)
|
||||
arr = arr.flatten()
|
||||
return np.mean(arr)
|
||||
# return np.sum(arr[np.argpartition(arr, -8)[-8:]])
|
||||
|
||||
def image_from_pos(self, pos_x, pos_y):
|
||||
x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
|
||||
y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
|
||||
img = np.zeros((x_ind.size, y_ind.size))
|
||||
xind = np.searchsorted(x_ind, pos_x)
|
||||
yind = np.searchsorted(y_ind, pos_y)
|
||||
img[xind, yind] = 1
|
||||
return img
|
||||
def extract_rect(self, img, x, y, x_index, y_index):
|
||||
length_2 = 0.01
|
||||
|
||||
def fft(self):
|
||||
Z_fft = sfft.fft2(self.img)
|
||||
Z_shift = sfft.fftshift(Z_fft)
|
||||
fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution)
|
||||
fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution)
|
||||
fft_freqx_clean = sfft.fftshift(fft_freqx)
|
||||
fft_freqy_clean = sfft.fftshift(fft_freqy)
|
||||
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
|
||||
pos_x_lower = x - length_2
|
||||
pos_x_upper = x + length_2
|
||||
|
||||
def pad_it_square(self, additional_pad=0):
|
||||
h = self.img.shape[0]
|
||||
w = self.img.shape[1]
|
||||
print(h, w)
|
||||
xx = np.maximum(h, w) + 2 * additional_pad
|
||||
yy = xx
|
||||
self.length_x = xx * self.resolution
|
||||
self.length_y = yy * self.resolution
|
||||
print("Pad to: ", xx, yy)
|
||||
pos_y_lower = y - length_2
|
||||
pos_y_upper = y + length_2
|
||||
|
||||
a = (xx - h) // 2
|
||||
aa = xx - a - h
|
||||
x_lower = np.searchsorted(x_index, pos_x_lower)
|
||||
x_upper = np.searchsorted(x_index, pos_x_upper)
|
||||
|
||||
b = (yy - w) // 2
|
||||
bb = yy - b - w
|
||||
y_lower = np.searchsorted(y_index, pos_y_lower)
|
||||
y_upper = np.searchsorted(y_index, pos_y_upper)
|
||||
|
||||
self.img = np.pad(self.img, pad_width=(
|
||||
(a, aa), (b, bb)), mode="constant")
|
||||
# fix different number of spins possible
|
||||
if x_upper - x_lower < 10:
|
||||
x_upper += 1
|
||||
if y_upper - y_lower < 10:
|
||||
y_upper += 1
|
||||
return img[y_lower:y_upper, x_lower:x_upper]
|
||||
|
||||
def gaussian(self, sigma):
|
||||
x = np.arange(-self.length_x/2,
|
||||
self.length_x/2, self.resolution)
|
||||
y = np.arange(-self.length_y/2,
|
||||
self.length_y/2, self.resolution)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
z = (
|
||||
1 / (2 * np.pi * sigma * sigma)
|
||||
* np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
|
||||
def helper(self, ax, freqx, freqy, intens):
|
||||
reci_lattice = self.lattice.reci()
|
||||
for tup, col in zip(reci_lattice, ["r", "b", "g"]):
|
||||
point_x, point_y = tup
|
||||
point_x = point_x.flatten()
|
||||
point_y = point_y.flatten()
|
||||
for px, py in zip(point_x, point_y):
|
||||
rect = self.rect_at_point(px, py, col)
|
||||
ax.add_patch(rect)
|
||||
sum = self.extract_rect(intens, px, py, freqx, freqy)
|
||||
ax.text(
|
||||
px, py, f"{self.reduce(sum):2.2}", clip_on=True
|
||||
)
|
||||
return intens
|
||||
|
||||
def rect_at_point(self, x, y, color):
|
||||
length_2 = 0.01
|
||||
rect = patches.Rectangle(
|
||||
(x - length_2, y - length_2),
|
||||
2 * length_2,
|
||||
2 * length_2,
|
||||
linewidth=1,
|
||||
edgecolor=color,
|
||||
facecolor="none",
|
||||
)
|
||||
self.img = np.multiply(self.img, z.T)
|
||||
return rect
|
||||
|
||||
def plot(self, ax, scale=None):
|
||||
if scale is None:
|
||||
ax.imshow(self.img)
|
||||
else:
|
||||
quad = np.ones((int(scale/self.resolution),
|
||||
int(scale/self.resolution)))
|
||||
img = scipy.signal.convolve2d(self.img, quad)
|
||||
ax.imshow(img)
|
||||
|
||||
def blur(self, sigma):
|
||||
self.img = scipy.ndimage.gaussian_filter(self.img, sigma)
|
||||
|
||||
|
||||
def plot(freqx, freqy, intens, ax_log=None, ax_lin=None):
|
||||
#point_x, point_y = reci_rutile()
|
||||
# for px, py in zip(point_x, point_y):
|
||||
# rect = rect_at_point(px, py, "r")
|
||||
# ax.add_patch(rect)
|
||||
# ax.text(
|
||||
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
|
||||
# )
|
||||
|
||||
#point_x, point_y = reci_mono()
|
||||
# for px, py in zip(point_x, point_y):
|
||||
# rect = rect_at_point(px, py, "b")
|
||||
# ax.add_patch(rect)
|
||||
# ax.text(
|
||||
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
|
||||
# )
|
||||
if ax_log:
|
||||
t = ax_log.imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
norm=matplotlib.colors.LogNorm(),
|
||||
cmap="viridis"
|
||||
)
|
||||
plt.colorbar(t)
|
||||
if ax_lin:
|
||||
t = ax_lin.imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
cmap="viridis"
|
||||
)
|
||||
plt.colorbar(t)
|
||||
def plot(self, freqx, freqy, intens, ax_log=None, ax_lin=None, vmax=None):
|
||||
if ax_log:
|
||||
intens = self.helper(ax_lin, freqx, freqy, intens)
|
||||
t = ax_log.imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
norm=matplotlib.colors.LogNorm(vmin=10, vmax=vmax),
|
||||
cmap="viridis",
|
||||
origin="lower"
|
||||
)
|
||||
plt.colorbar(t, ax=ax_log)
|
||||
self.helper(ax_log, freqx, freqy, intens)
|
||||
if ax_lin:
|
||||
intens = self.helper(ax_lin, freqx, freqy, intens)
|
||||
t = ax_lin.imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
vmax=vmax,
|
||||
cmap="viridis",
|
||||
origin="lower"
|
||||
)
|
||||
plt.colorbar(t, ax=ax_lin)
|
||||
|
||||
|
||||
def rotate(x, y, angle):
|
||||
@ -122,27 +100,114 @@ def rotate(x, y, angle):
|
||||
|
||||
|
||||
def test_square():
|
||||
lat = SCC_Lattice(40, 40)
|
||||
pos_x, pos_y = lat.get_from_mask(None)
|
||||
pos_x, pos_y = rotate(pos_x, pos_y,30)
|
||||
LEN = 40
|
||||
#lat = SCC_Lattice(LEN, LEN)
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
|
||||
#pos_x, pos_y = rotate(pos_x, pos_y, 30)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
fig, axs = plt.subplots(2, 2)
|
||||
si.pad_it_square(10)
|
||||
si.plot(axs[0, 0], 2)
|
||||
si.gaussian(300)
|
||||
# si.gaussian(LEN)
|
||||
# si.blur(3)
|
||||
si.plot(axs[0, 1], 2)
|
||||
|
||||
plt.pause(0.1)
|
||||
fx, fy, intens = si.fft()
|
||||
plot(fx, fy, intens, axs[1, 0], axs[1, 1])
|
||||
plot.plot(fx, fy, intens, axs[1, 0], axs[1, 1])
|
||||
print("Done")
|
||||
plt.savefig("test.png")
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_mixed():
|
||||
LEN = 40
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
|
||||
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
si.pad_it_square(10)
|
||||
fx, fy, intens_rutile = si.fft()
|
||||
|
||||
pos_x, pos_y = lat.get_from_mask(np.ones((40, 40)))
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
si.pad_it_square(10)
|
||||
fx, fy, intens_mono = si.fft()
|
||||
|
||||
mask_misk = np.ones((40, 40))
|
||||
ind = np.arange(mask_misk.size)
|
||||
np.random.shuffle(ind)
|
||||
mask_misk[np.unravel_index(ind[:800], (40, 40))] = False
|
||||
pos_x, pos_y = lat.get_from_mask(mask_misk)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
si.pad_it_square(10)
|
||||
fx, fy, intens_mixed = si.fft()
|
||||
|
||||
fig, axs = plt.subplots(2, 3)
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_rutile,
|
||||
ax_log=axs[0, 0], ax_lin=axs[1, 0], vmax=10e7)
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_mono,
|
||||
ax_log=axs[0, 2], ax_lin=axs[1, 2], vmax=10e7)
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_mixed,
|
||||
ax_log=axs[0, 1], ax_lin=axs[1, 1], vmax=10e7)
|
||||
|
||||
print(np.sum(intens_mono), np.sum(intens_rutile), np.sum(intens_mixed))
|
||||
|
||||
for ax in axs.flatten():
|
||||
ax.set_xlim(-1, 1)
|
||||
ax.set_ylim(-1, 1)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def random():
|
||||
LEN = 40
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
maske = np.zeros((LEN, LEN))
|
||||
ind = np.arange(LEN * LEN)
|
||||
np.random.shuffle(ind)
|
||||
reci_lattice = lat.reci()
|
||||
|
||||
out = [[] for x in range(len(reci_lattice))]
|
||||
percentage = []
|
||||
counter = 0
|
||||
for i in tqdm.tqdm(ind):
|
||||
maske[np.unravel_index(i, (LEN, LEN))] = True
|
||||
counter += 1
|
||||
if np.mod(counter, 20) != 0:
|
||||
continue
|
||||
|
||||
pos_x, pos_y = lat.get_from_mask(maske)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
si.pad_it_square(10)
|
||||
si.gaussian(LEN)
|
||||
fx, fy, intens = si.fft()
|
||||
|
||||
for tup, lis in zip(reci_lattice, out):
|
||||
point_x, point_y = tup
|
||||
point_x = point_x.flatten()
|
||||
point_y = point_y.flatten()
|
||||
sum = 0.
|
||||
for px, py in zip(point_x, point_y):
|
||||
sum += np.sum(plot.extract_rect(intens, px, py, fx, fy))
|
||||
|
||||
lis.append(sum)
|
||||
percentage.append(np.mean(maske))
|
||||
|
||||
for o in out:
|
||||
plt.scatter(percentage, o/o[0])
|
||||
plt.plot([0,1], [o[0], o[-1]])
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_square()
|
||||
# test_square()
|
||||
# test_mixed()
|
||||
random()
|
||||
# def test_lattice():
|
||||
# lat = VO2_Lattice(10, 10)
|
||||
# maske = np.zeros((10, 10), dtype=bool)
|
||||
|
74
2d_fourie/spin_image.py
Normal file
74
2d_fourie/spin_image.py
Normal file
@ -0,0 +1,74 @@
|
||||
import numpy as np
|
||||
import scipy.fftpack as sfft
|
||||
|
||||
|
||||
class SpinImage:
|
||||
resolution = 0.1
|
||||
|
||||
def __init__(self, x_pos, y_pos):
|
||||
x_pos = x_pos - np.min(x_pos)
|
||||
y_pos = y_pos - np.min(y_pos)
|
||||
self.length_x = np.max(x_pos) + self.resolution
|
||||
self.length_y = np.max(y_pos) + self.resolution
|
||||
self.img = self.image_from_pos(x_pos, y_pos)
|
||||
|
||||
def image_from_pos(self, pos_x, pos_y):
|
||||
x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
|
||||
y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
|
||||
img = np.zeros((x_ind.size, y_ind.size))
|
||||
xind = np.searchsorted(x_ind, pos_x)
|
||||
yind = np.searchsorted(y_ind, pos_y)
|
||||
img[xind, yind] = 1
|
||||
return img
|
||||
|
||||
def fft(self):
|
||||
Z_fft = sfft.fft2(self.img)
|
||||
Z_shift = sfft.fftshift(Z_fft)
|
||||
fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution)
|
||||
fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution)
|
||||
fft_freqx_clean = sfft.fftshift(fft_freqx)
|
||||
fft_freqy_clean = sfft.fftshift(fft_freqy)
|
||||
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
|
||||
|
||||
def pad_it_square(self, additional_pad=0):
|
||||
h = self.img.shape[0]
|
||||
w = self.img.shape[1]
|
||||
print(h, w)
|
||||
xx = np.maximum(h, w) + 2 * additional_pad
|
||||
yy = xx
|
||||
self.length_x = xx * self.resolution
|
||||
self.length_y = yy * self.resolution
|
||||
print("Pad to: ", xx, yy)
|
||||
|
||||
a = (xx - h) // 2
|
||||
aa = xx - a - h
|
||||
|
||||
b = (yy - w) // 2
|
||||
bb = yy - b - w
|
||||
|
||||
self.img = np.pad(self.img, pad_width=(
|
||||
(a, aa), (b, bb)), mode="constant")
|
||||
|
||||
def gaussian(self, sigma):
|
||||
x = np.arange(-self.length_x / 2,
|
||||
self.length_x / 2, self.resolution)
|
||||
y = np.arange(-self.length_y / 2,
|
||||
self.length_y / 2, self.resolution)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
z = (
|
||||
1 / (2 * np.pi * sigma * sigma)
|
||||
* np.exp(-(X ** 2 / (2 * sigma ** 2) + Y ** 2 / (2 * sigma ** 2)))
|
||||
)
|
||||
self.img = np.multiply(self.img, z.T)
|
||||
|
||||
def plot(self, ax, scale=None):
|
||||
if scale is None:
|
||||
ax.imshow(self.img)
|
||||
else:
|
||||
quad = np.ones((int(scale / self.resolution),
|
||||
int(scale / self.resolution)))
|
||||
img = scipy.signal.convolve2d(self.img, quad)
|
||||
ax.imshow(img)
|
||||
|
||||
def blur(self, sigma):
|
||||
self.img = scipy.ndimage.gaussian_filter(self.img, sigma)
|
Loading…
Reference in New Issue
Block a user