other run

This commit is contained in:
Jacob Holder 2023-04-20 20:24:02 +02:00
parent 71b84b9ed3
commit a015542b03
2 changed files with 7 additions and 196 deletions

View File

@ -173,5 +173,5 @@ class VO2_New(VO2_Lattice):
# maske[1::2, :] = mask
# print(maske.shape)
# return maske
def parse_maske(self, mask: np.ndarray):
def parse_mask(self, mask: np.ndarray):
return mask

View File

@ -5,7 +5,7 @@ from scipy import signal
from cache import timeit
from extractors import Rect_Evaluator
import tqdm
from lattices import SCC_Lattice, VO2_Lattice
from lattices import SCC_Lattice, VO2_Lattice, VO2_New
import sys
from spin_image import SpinImage
import numpy as np
@ -21,127 +21,12 @@ ch.setFormatter(formatter)
logger.addHandler(ch)
def test_mixed():
plt.style.use("one_column")
fig, axs = plt.subplots(3, 3)
LEN = 50
lat = VO2_Lattice(LEN, LEN)
plot = Plotter(lat)
si = SpinImage(lat.get_phases())
mask_misk = np.ones((LEN, LEN))
ind = np.arange(mask_misk.size)
np.random.shuffle(ind)
mask_misk[np.unravel_index(ind[:800], (LEN, LEN))] = 0
si.apply_mask(lat.parse_mask(np.zeros((LEN, LEN))))
print("Clean Rutile: ", si.get_intens(
lat.parse_mask(np.zeros((LEN, LEN)))))
si.gaussian(20)
print("Rutile: ", si.get_intens(lat.parse_mask(np.zeros((LEN, LEN)))))
intens_mono = si.fft()
intens_mono.clean()
plot.plot_spins(si=si, ax_lin=axs[0, 0])
si.apply_mask(lat.parse_mask(np.ones((LEN, LEN))))
print("Clean Mono: ", si.get_intens(lat.parse_mask(np.ones((LEN, LEN)))))
si.gaussian(20)
print("Mono: ", si.get_intens(lat.parse_mask(np.ones((LEN, LEN)))))
intens_rutile = si.fft()
intens_rutile.clean()
plot.plot_spins(si=si, ax_lin=axs[0, 2])
si.apply_mask(lat.parse_mask(mask_misk))
print("Clean Mixed: ", si.get_intens(lat.parse_mask(mask_misk)))
si.gaussian(20)
print("Mixed: ", si.get_intens(lat.parse_mask(mask_misk)))
intens_mixed = si.fft()
intens_mixed.clean()
plot.plot_spins(si=si, ax_lin=axs[0, 1])
plot.plot_fft(intens_mono,
ax_log=axs[1, 0], ax_lin=axs[2, 0])
plot.plot_fft(intens_rutile,
ax_log=axs[1, 2], ax_lin=axs[2, 2])
plot.plot_fft(intens_mixed,
ax_log=axs[1, 1], ax_lin=axs[2, 1])
plt.figure()
fig, axs = plt.subplots(1,3)
fig.set_figheight(1.7)
plot.plot_fft(intens_mixed,
ax_log=axs[1])
plot.plot_fft(intens_mono,
ax_log=axs[0])
plot.plot_fft(intens_rutile,
ax_log=axs[2])
for ax, t in zip(axs,["monoclinic", "mixed", "rutile"]):
ax.set_title(t)
ax.set_xlim(-1,1)
ax.set_ylim(-1,1)
plt.tight_layout()
fig.savefig("diff_pattern.pdf")
fig.savefig("diff_pattern.png")
# Plotting cuts
def test_pdf():
LEN = 40
lat = VO2_Lattice(LEN, LEN)
plot = Plotter(lat)
si = SpinImage(lat.get_phases())
integrate = 10
out_intens = None
already_inited = False
for i in range(integrate):
mask_misk = np.ones((LEN, LEN))
ind = np.arange(mask_misk.size)
np.random.shuffle(ind)
mask_misk[np.unravel_index(ind[:800], (LEN, LEN))] = 0
si.apply_mask(lat.parse_mask(mask_misk))
si.gaussian(20)
intens = si.fft()
intens.clean()
if not already_inited:
print("Init")
rect = Rect_Evaluator(lat.get_spots())
rect.generate_mask(intens, merge=True)
out_intens = intens
already_inited = True
else:
out_intens.intens += intens.intens
out_intens = intens
rect.purge(intens)
plt.figure()
plot.plot_fft(intens, ax_log=plt.gca())
plt.xlim(-1, 1)
plt.ylim(-1, 1)
plt.savefig("diff.png")
plt.savefig("diff.pdf")
pdf = sfft.fft2(intens.intens)
pdf = sfft.fftshift(pdf)
plt.figure()
plt.imshow(np.abs(pdf), vmax=100)
plt.xlabel("Pos")
plt.ylabel("Pos")
x = pdf.shape[1] / 2.
y = pdf.shape[0] / 2.
off = 100
plt.xlim(x-off, x+off)
plt.ylim(y-off, y+off)
plt.tight_layout()
plt.savefig("pdf.pdf")
plt.savefig("pdf.png")
def random(seed):
np.random.seed(seed)
LEN = 40
lat = VO2_Lattice(LEN, LEN)
maske = np.zeros((LEN, LEN))
ind = np.arange(LEN * LEN)
lat = VO2_New(LEN, LEN)
maske = np.zeros((LEN*2, LEN*2))
ind = np.arange(maske.size)
np.random.shuffle(ind)
rect = Rect_Evaluator(lat.get_spots())
@ -152,7 +37,7 @@ def random(seed):
si = SpinImage(lat.get_phases())
already_inited = False
for i in tqdm.tqdm(ind):
maske[np.unravel_index(i, (LEN, LEN))] = True
maske[np.unravel_index(i, maske.shape)] = True
counter += 1
if np.mod(counter, 100) != 0 and i != ind[-1] and i != ind[0]:
continue
@ -182,63 +67,6 @@ def random(seed):
w_percentage=weighted_percentage, percentage=percentage, out_1=out_rect[0],
out_2=out_rect[1], out_3=out_rect[2], out_4=out_rect[3])
def sample_index(p):
i = np.random.choice(np.arange(p.size), p=p.ravel())
return np.unravel_index(i, p.shape)
def ising(seed, temp=0.5):
np.random.seed(seed)
LEN = 40
lat = VO2_Lattice(LEN, LEN)
maske = np.zeros((LEN, LEN))
rect = Rect_Evaluator(lat.get_spots())
out_rect = [[] for x in range(4)]
percentage = []
weighted_percentage = []
counter = 0
si = SpinImage(lat.get_phases())
already_inited = False
for i in tqdm.tqdm(range(LEN*LEN)):
probability = np.roll(maske, 1, axis=0).astype(float)
probability += np.roll(maske, -1, axis=0).astype(float)
probability += np.roll(maske, 1, axis=1).astype(float)
probability += np.roll(maske, -1, axis=1).astype(float)
probability = np.exp(probability/temp)
probability[maske > 0] = 0
probability /= np.sum(probability)
maske[sample_index(probability)] = True
counter += 1
if np.mod(counter, 100) != 0:
continue
si.apply_mask(lat.parse_mask(maske))
si.gaussian(20)
intens = si.fft()
if not already_inited:
rect.generate_mask(intens, merge=True)
already_inited = True
ir, vr = rect.extract(intens)
for lis, val in zip(out_rect, vr):
lis.append(val)
percentage.append(np.sum(maske))
[p1, p2] = si.get_intens(lat.parse_mask(maske))
weighted_percentage.append(p1/(p1+p2))
percentage = np.array(percentage)
weighted_percentage = np.array(weighted_percentage)
percentage /= np.max(percentage)
np.savez(f"ising_{temp}_rect_{seed}.npz",
w_percentage=weighted_percentage, percentage=percentage, out_1=out_rect[0],
out_2=out_rect[1], out_3=out_rect[2], out_4=out_rect[3])
def runner():
np.random.seed(1234)
seeds = np.random.randint(0, 10000, 200)
@ -253,21 +81,4 @@ def runner():
if __name__ == "__main__":
np.random.seed(1234)
# runner()
# test_me()
# test_square()
test_mixed()
# test_pdf()
plt.show()
# random(1234)
# ising(1234)
# test_pdf()
# plt.show()
# exit()
# for i in np.random.randint(0, 10000, 5):
# random(i)
# ising(i, 0.5)
# ising(i, 1.0)
# ising(i, 1.5)
# plt.show()
runner()