Stuff done
This commit is contained in:
parent
7e5eb6e8c7
commit
dd8b1437dc
@ -7,12 +7,13 @@ def timeit(func):
|
||||
@wraps(func)
|
||||
def timeit_wrapper(*args, **kwargs):
|
||||
start_time = time.perf_counter()
|
||||
print(f"Start Function {func.__name__}:")
|
||||
result = func(*args, **kwargs)
|
||||
end_time = time.perf_counter()
|
||||
total_time = end_time - start_time
|
||||
# first item in the args, ie `args[0]` is `self`
|
||||
print(
|
||||
f'Function {func.__name__}{args} {kwargs} Took {total_time:.4f} seconds')
|
||||
f'Function {func.__name__} Took {total_time:.4f} seconds')
|
||||
return result
|
||||
return timeit_wrapper
|
||||
|
||||
|
@ -16,6 +16,9 @@ class Lattice:
|
||||
def get_from_mask(self, maske):
|
||||
pass
|
||||
|
||||
def get_both(self):
|
||||
pass
|
||||
|
||||
def reci(self):
|
||||
pass
|
||||
|
||||
@ -30,6 +33,9 @@ class SCC_Lattice(Lattice):
|
||||
def get_from_mask(self, maske):
|
||||
return self.X, self.Y
|
||||
|
||||
def get_both(self):
|
||||
return [(self.X, self.Y), (self.X, self.Y)]
|
||||
|
||||
def reci(self):
|
||||
x = np.arange(-3, 4) * 0.2
|
||||
y = np.arange(-3, 4) * 0.2
|
||||
@ -71,8 +77,6 @@ class VO2_Lattice(Lattice):
|
||||
offset_a_r = res * int(offset_a_r/res)
|
||||
offset_c_r = res * int(offset_c_r/res)
|
||||
|
||||
offset_a_r = 0.5
|
||||
offset_c_r = 0.5
|
||||
print(offset_a_r, offset_c_r)
|
||||
|
||||
self.atom_x_mono = offset_a_r + X * \
|
||||
@ -116,9 +120,11 @@ class VO2_Lattice(Lattice):
|
||||
inplace_pos_y[mask] = self.atom_y_mono[mask]
|
||||
return inplace_pos_x, inplace_pos_y
|
||||
|
||||
def get_both(self):
|
||||
return [(self.atom_x_rut, self.atom_y_rut), (self.atom_x_mono, self.atom_y_mono)]
|
||||
|
||||
def reci_rutile(self):
|
||||
num = 20
|
||||
#num = 2
|
||||
x = np.arange(-num, num + 1)
|
||||
y = np.arange(-num, num + 1)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
|
@ -1,5 +1,5 @@
|
||||
from lattices import SCC_Lattice, VO2_Lattice
|
||||
from spin_image import SpinImage
|
||||
from spin_image import SpinImage, SpinImage_Two_Phase
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as patches
|
||||
@ -7,6 +7,7 @@ import matplotlib
|
||||
import tqdm
|
||||
from extractors import Rect_Evaluator, Voronoi_Evaluator, Image_Wrapper
|
||||
from cache import timeit
|
||||
from scipy import signal
|
||||
|
||||
|
||||
class Plotter:
|
||||
@ -38,7 +39,7 @@ class Plotter:
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
norm=matplotlib.colors.LogNorm(vmin=10),
|
||||
norm=matplotlib.colors.LogNorm(vmin=1e-12),
|
||||
cmap="viridis",
|
||||
origin="lower"
|
||||
)
|
||||
@ -55,6 +56,14 @@ class Plotter:
|
||||
plt.colorbar(t, ax=ax_lin)
|
||||
|
||||
|
||||
def plot_periodic(array):
|
||||
plt.figure()
|
||||
kernel = np.ones((10, 10))
|
||||
#array = signal.convolve2d(array, kernel, boundary='symm', mode='same')
|
||||
tiled = np.tile(array, (2, 2))
|
||||
plt.imshow(tiled)
|
||||
|
||||
|
||||
def rotate(x, y, angle):
|
||||
radian = angle / 180 * 2 * np.pi
|
||||
return np.cos(radian) * x - np.sin(radian) * y,\
|
||||
@ -67,14 +76,18 @@ def test_square():
|
||||
# lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
|
||||
[(x, y), (x1, y1)] = lat.get_both()
|
||||
# pos_x, pos_y = rotate(pos_x, pos_y, 30)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
# si = SpinImage(pos_x, pos_y)
|
||||
si = SpinImage_Two_Phase(x, y, x1, y1)
|
||||
si.apply_mask(np.zeros((20, 20)))
|
||||
fig, axs = plt.subplots(2, 2)
|
||||
si.plot(axs[0, 0], 1)
|
||||
si.plot(axs[0, 0])
|
||||
# si.gaussian(LEN)
|
||||
# si.blur(3)
|
||||
si.pad_it_square(size=int((5*LEN)/si.resolution))
|
||||
si.plot(axs[0, 1], 1)
|
||||
# si.pad_it_square(additional_pad=1000)
|
||||
si.gaussian(20)
|
||||
si.plot(axs[0, 1])
|
||||
|
||||
plt.pause(0.1)
|
||||
|
||||
@ -139,10 +152,14 @@ def test_mixed():
|
||||
int((LEN * 4.554) / si_mixed.resolution)+shift_y)
|
||||
fx, fy, intens_mixed = si_mixed.fft()
|
||||
|
||||
plot_periodic(si_rutile.img)
|
||||
plot_periodic(si_mono.img)
|
||||
plot_periodic(si_mixed.img)
|
||||
|
||||
fig, axs = plt.subplots(3, 3)
|
||||
si_rutile.plot(axs[0, 0], 1)
|
||||
si_mono.plot(axs[0, 2], 1)
|
||||
si_mixed.plot(axs[0, 1], 1)
|
||||
si_rutile.plot(axs[0, 0])
|
||||
si_mono.plot(axs[0, 2])
|
||||
si_mixed.plot(axs[0, 1])
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_rutile,
|
||||
ax_log=axs[1, 0], ax_lin=axs[2, 0], vmax=10e7)
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_mono,
|
||||
@ -295,9 +312,37 @@ def ising(seed):
|
||||
out_2=out_voro[1], out_3=out_voro[2], out_4=out_voro[3])
|
||||
|
||||
|
||||
def test_me():
|
||||
LEN = 20
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
maske = np.zeros((LEN, LEN), dtype=bool)
|
||||
pos_x, pos_y = lat.get_from_mask(maske)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
|
||||
fig, axs = plt.subplots(1, 3)
|
||||
kernel = np.ones((20, 20))
|
||||
array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same')
|
||||
axs[0].imshow(array)
|
||||
|
||||
[(x, y), (x1, y1)] = lat.get_both()
|
||||
si = SpinImage_Two_Phase(x, y, x1, y1)
|
||||
si.apply_mask(maske)
|
||||
|
||||
array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same')
|
||||
# axs[1].imshow(array)
|
||||
axs[1].imshow(si.img)
|
||||
|
||||
np.invert(maske)
|
||||
si.apply_mask(maske)
|
||||
array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same')
|
||||
# axs[1].imshow(array)
|
||||
axs[2].imshow(si.img)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_square()
|
||||
test_mixed()
|
||||
# test_me()
|
||||
test_square()
|
||||
# test_mixed()
|
||||
plt.show()
|
||||
# random()
|
||||
# np.random.seed(1234)
|
||||
|
@ -2,6 +2,183 @@ import numpy as np
|
||||
import scipy
|
||||
import scipy.fftpack as sfft
|
||||
import scipy.signal
|
||||
import tqdm
|
||||
from cache import timeit
|
||||
|
||||
|
||||
class SpinImage_Two_Phase:
|
||||
resolution = 0.05
|
||||
offset = 40
|
||||
|
||||
@timeit
|
||||
def __init__(self, x_pos_low, y_pos_low, x_pos_high, y_pos_high):
|
||||
assert x_pos_low.shape == y_pos_low.shape
|
||||
assert x_pos_high.shape == y_pos_high.shape
|
||||
assert x_pos_low.shape == x_pos_high.shape
|
||||
|
||||
offset_shift = self.offset * self.resolution
|
||||
|
||||
x_pos_low = x_pos_low - np.min(x_pos_low) + offset_shift
|
||||
y_pos_low = y_pos_low - np.min(y_pos_low) + offset_shift
|
||||
x_pos_high = x_pos_high - np.min(x_pos_high) + offset_shift
|
||||
y_pos_high = y_pos_high - np.min(y_pos_high) + offset_shift
|
||||
max_len_x = np.maximum(np.max(x_pos_low), np.max(x_pos_high))
|
||||
max_len_y = np.maximum(np.max(y_pos_low), np.max(y_pos_high))
|
||||
self.length_x = max_len_x + (self.offset + 1) * self.resolution
|
||||
self.length_y = max_len_y + (self.offset + 1) * self.resolution
|
||||
self.x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
|
||||
self.y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
|
||||
self.x_low, self.y_low = self._stuff(x_pos_low, y_pos_low)
|
||||
self.x_high, self.y_high = self._stuff(x_pos_high, y_pos_high)
|
||||
|
||||
X, Y = np.meshgrid(self.x_ind, self.y_ind, indexing="ij")
|
||||
print(X.shape, self.x_low.flatten().max(), self.y_low.flatten().max())
|
||||
sigma = .1
|
||||
self.low_list = []
|
||||
for x, y, x_ind, y_ind in zip(
|
||||
x_pos_low.flatten(),
|
||||
y_pos_low.flatten(),
|
||||
self.x_low.flatten(),
|
||||
self.y_low.flatten(),
|
||||
):
|
||||
xl, yl, xu, yu = self.clean_bounds(
|
||||
x_ind - self.offset,
|
||||
y_ind - self.offset,
|
||||
x_ind + self.offset,
|
||||
y_ind + self.offset,
|
||||
X.shape,
|
||||
)
|
||||
self.low_list.append(np.exp(-0.5 * ((X[xl:xu, yl:yu] - x) ** 2 +
|
||||
(Y[xl:xu, yl:yu] - y) ** 2) / sigma**2))
|
||||
self.low_list = np.array(
|
||||
self.low_list, dtype=object)
|
||||
#print("BEFOR:", self.low_list.shape)
|
||||
#self.low_list = self.low_list.reshape((*self.x_high.shape,80,80))
|
||||
#print("HIER:", self.low_list.shape)
|
||||
self.high_list = []
|
||||
for x, y, x_ind, y_ind in zip(
|
||||
x_pos_high.flatten(),
|
||||
y_pos_high.flatten(),
|
||||
self.x_high.flatten(),
|
||||
self.y_high.flatten(),
|
||||
):
|
||||
xl, yl, xu, yu = self.clean_bounds(
|
||||
x_ind - self.offset,
|
||||
y_ind - self.offset,
|
||||
x_ind + self.offset,
|
||||
y_ind + self.offset,
|
||||
X.shape,
|
||||
)
|
||||
self.high_list.append(np.exp(-0.5 * ((X[xl:xu, yl:yu] - x) ** 2 +
|
||||
(Y[xl:xu, yl:yu] - y) ** 2) / sigma**2))
|
||||
self.high_list = np.array(self.high_list, dtype=object)
|
||||
|
||||
def clean_bounds(self, xl, yl, xu, yu, shape):
|
||||
if xl < 0:
|
||||
xl = 0
|
||||
if yl < 0:
|
||||
yl = 0
|
||||
|
||||
if xu > shape[0]:
|
||||
xu = shape[0]
|
||||
if yu > shape[1]:
|
||||
yu = shape[1]
|
||||
|
||||
return xl, yl, xu, yu
|
||||
|
||||
def _stuff(self, pos_x, pos_y):
|
||||
xind = np.searchsorted(self.x_ind, pos_x).astype(int)
|
||||
yind = np.searchsorted(self.y_ind, pos_y).astype(int)
|
||||
return xind, yind
|
||||
|
||||
@timeit
|
||||
def apply_mask(self, maske):
|
||||
mask = np.empty_like(self.x_high, dtype=bool)
|
||||
mask[0::2, 0::2] = maske
|
||||
mask[1::2, 0::2] = maske
|
||||
mask[0::2, 1::2] = maske
|
||||
mask[1::2, 1::2] = maske
|
||||
mask = mask.flatten()
|
||||
self.img = np.zeros((self.x_ind.size, self.y_ind.size))
|
||||
print(self.img.shape)
|
||||
for x, y, dat in zip(
|
||||
self.x_high.flatten()[mask],
|
||||
self.y_high.flatten()[mask],
|
||||
self.high_list[mask],
|
||||
):
|
||||
xl, yl, xu, yu = self.clean_bounds(
|
||||
x - self.offset,
|
||||
y - self.offset,
|
||||
x + self.offset,
|
||||
y + self.offset,
|
||||
self.img.shape,
|
||||
)
|
||||
self.img[x - self.offset: x + self.offset,
|
||||
y - self.offset: y + self.offset] = dat
|
||||
self.img[x, y] += 1
|
||||
mask = np.invert(mask)
|
||||
for x, y, dat in zip(
|
||||
self.x_high.flatten()[mask],
|
||||
self.y_high.flatten()[mask],
|
||||
self.high_list[mask],
|
||||
):
|
||||
xl, yl, xu, yu = self.clean_bounds(
|
||||
x - self.offset,
|
||||
y - self.offset,
|
||||
x + self.offset,
|
||||
y + self.offset,
|
||||
self.img.shape,
|
||||
)
|
||||
if self.img[xl:xu, yl:yu].shape == dat.shape:
|
||||
self.img[xl:xu, yl:yu] = dat
|
||||
else:
|
||||
self.img[x, y] += 1
|
||||
|
||||
@timeit
|
||||
def fft(self):
|
||||
Z_fft = sfft.fft2(self.img)
|
||||
Z_shift = sfft.fftshift(Z_fft)
|
||||
fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution)
|
||||
fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution)
|
||||
fft_freqx_clean = sfft.fftshift(fft_freqx)
|
||||
fft_freqy_clean = sfft.fftshift(fft_freqy)
|
||||
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
|
||||
|
||||
@timeit
|
||||
def plot(self, ax, scale=None):
|
||||
if scale is None:
|
||||
ax.imshow(self.img)
|
||||
else:
|
||||
quad = np.ones((int(scale / self.resolution),
|
||||
int(scale / self.resolution)))
|
||||
img = scipy.signal.convolve2d(self.img, quad)
|
||||
ax.imshow(img)
|
||||
|
||||
@timeit
|
||||
def pad_it_square(self, additional_pad=0, size=None):
|
||||
h = self.img.shape[0]
|
||||
w = self.img.shape[1]
|
||||
xx = np.maximum(h, w) + 2 * additional_pad + 1
|
||||
if size is not None:
|
||||
xx = np.maximum(xx, size)
|
||||
yy = xx
|
||||
|
||||
a = (xx - h) // 2
|
||||
aa = xx - a - h
|
||||
|
||||
b = (yy - w) // 2
|
||||
bb = yy - b - w
|
||||
|
||||
self.img = np.pad(self.img, pad_width=(
|
||||
(a, aa), (b, bb)), mode="constant")
|
||||
|
||||
def gaussian(self, sigma):
|
||||
x = np.arange(-self.length_x / 2, self.length_x / 2, self.resolution)
|
||||
y = np.arange(-self.length_y / 2, self.length_y / 2, self.resolution)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
z = 1 / (2 * np.pi * sigma * sigma) * \
|
||||
np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
|
||||
self.img = np.multiply(self.img, z.T)
|
||||
|
||||
|
||||
class SpinImage:
|
||||
@ -23,6 +200,15 @@ class SpinImage:
|
||||
img[xind, yind] = 1
|
||||
return img
|
||||
|
||||
def image_from_pos_with_gauss(self, pos_x, pos_y, sigma=1):
|
||||
x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
|
||||
y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
|
||||
img = np.zeros((x_ind.size, y_ind.size))
|
||||
X, Y = np.meshgrid(y_ind, x_ind)
|
||||
for px, py in tqdm.tqdm(zip(pos_x.flatten(), pos_y.flatten())):
|
||||
img += np.exp(-0.5 * ((X - px) ** 2 + (Y - py) ** 2) / sigma**2)
|
||||
return img
|
||||
|
||||
def fft(self):
|
||||
Z_fft = sfft.fft2(self.img)
|
||||
Z_shift = sfft.fftshift(Z_fft)
|
||||
@ -69,27 +255,19 @@ class SpinImage:
|
||||
(a, aa), (b, bb)), mode="constant")
|
||||
|
||||
def percentage_gaussian(self, mask, sigma):
|
||||
x = np.linspace(-self.length_x / 2,
|
||||
self.length_x / 2, mask.shape[0])
|
||||
y = np.linspace(-self.length_y / 2,
|
||||
self.length_y / 2, mask.shape[1])
|
||||
x = np.linspace(-self.length_x / 2, self.length_x / 2, mask.shape[0])
|
||||
y = np.linspace(-self.length_y / 2, self.length_y / 2, mask.shape[1])
|
||||
X, Y = np.meshgrid(x, y)
|
||||
z = (
|
||||
1 / (2 * np.pi * sigma * sigma)
|
||||
* np.exp(-(X ** 2 / (2 * sigma ** 2) + Y ** 2 / (2 * sigma ** 2)))
|
||||
)
|
||||
z = 1 / (2 * np.pi * sigma * sigma) * \
|
||||
np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
|
||||
return np.multiply(mask, z.T)
|
||||
|
||||
def gaussian(self, sigma):
|
||||
x = np.arange(-self.length_x / 2,
|
||||
self.length_x / 2, self.resolution)
|
||||
y = np.arange(-self.length_y / 2,
|
||||
self.length_y / 2, self.resolution)
|
||||
x = np.arange(-self.length_x / 2, self.length_x / 2, self.resolution)
|
||||
y = np.arange(-self.length_y / 2, self.length_y / 2, self.resolution)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
z = (
|
||||
1 / (2 * np.pi * sigma * sigma)
|
||||
* np.exp(-(X ** 2 / (2 * sigma ** 2) + Y ** 2 / (2 * sigma ** 2)))
|
||||
)
|
||||
z = 1 / (2 * np.pi * sigma * sigma) * \
|
||||
np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
|
||||
self.img = np.multiply(self.img, z.T)
|
||||
|
||||
def plot(self, ax, scale=None):
|
||||
@ -97,7 +275,7 @@ class SpinImage:
|
||||
ax.imshow(self.img)
|
||||
else:
|
||||
quad = np.ones((int(scale / self.resolution),
|
||||
int(scale / self.resolution)))
|
||||
int(scale / self.resolution)))
|
||||
img = scipy.signal.convolve2d(self.img, quad)
|
||||
ax.imshow(img)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user