import numpy as np import scipy import scipy.fftpack as sfft import scipy.signal import tqdm from cache import timeit class SpinImage_Two_Phase: resolution = 0.05 offset = 40 def make_list(self, x_pos, y_pos, x_inds, y_inds): sigma = .1 x_ind = np.arange(0, self.length_x, self.resolution) y_ind = np.arange(0, self.length_y, self.resolution) X, Y = np.meshgrid(x_ind, y_ind, indexing="ij") out_list = [] for x, y, x_ind, y_ind in zip( x_pos.flatten(), y_pos.flatten(), x_inds.flatten(), y_inds.flatten(), ): xl, yl, xu, yu = self.clean_bounds( x_ind - self.offset, y_ind - self.offset, x_ind + self.offset, y_ind + self.offset, X.shape, ) out_list.append(np.exp(-0.5 * ((X[xl:xu, yl:yu] - x) ** 2 + (Y[xl:xu, yl:yu] - y) ** 2) / sigma**2)) #out_list.append(np.ones_like(X[xl:xu, yl:yu])) out_list = np.array(out_list) return out_list @timeit def __init__(self, x_pos_low, y_pos_low, x_pos_high, y_pos_high): assert x_pos_low.shape == y_pos_low.shape assert x_pos_high.shape == y_pos_high.shape assert x_pos_low.shape == x_pos_high.shape offset_shift = self.offset * self.resolution zero_shift_x = np.minimum(np.min(x_pos_low), np.min(x_pos_high)) zero_shift_y = np.minimum(np.min(y_pos_low), np.min(y_pos_high)) x_pos_low = x_pos_low - zero_shift_x + offset_shift y_pos_low = y_pos_low - zero_shift_y + offset_shift x_pos_high = x_pos_high - zero_shift_x + offset_shift y_pos_high = y_pos_high - zero_shift_y + offset_shift max_len_x = np.maximum(np.max(x_pos_low), np.max(x_pos_high)) max_len_y = np.maximum(np.max(y_pos_low), np.max(y_pos_high)) self.length_x = max_len_x + (self.offset + 1) * self.resolution self.length_y = max_len_y + (self.offset + 1) * self.resolution self.x_index_low, self.y_index_low = self._stuff(x_pos_low, y_pos_low) self.x_index_high, self.y_index_high = self._stuff( x_pos_high, y_pos_high) self.buffer_low = self.make_list( x_pos_low, y_pos_low, self.x_index_low, self.y_index_low) self.buffer_high = self.make_list( x_pos_high, y_pos_high, self.x_index_high, self.y_index_high) def clean_bounds(self, xl, yl, xu, yu, shape): if xl < 0: xl = 0 if yl < 0: yl = 0 if xu > shape[0]: xu = shape[0] if yu > shape[1]: yu = shape[1] return xl, yl, xu, yu def _stuff(self, pos_x, pos_y): x_ind = np.arange(0, self.length_x, self.resolution) y_ind = np.arange(0, self.length_y, self.resolution) xind = np.searchsorted(x_ind, pos_x).astype(int) yind = np.searchsorted(y_ind, pos_y).astype(int) return xind, yind def _apply_mask(self, x, y, buffer, mask): for x, y, dat in zip( x.flatten()[mask], y.flatten()[mask], buffer[mask], ): xl, yl, xu, yu = self.clean_bounds( x - self.offset, y - self.offset, x + self.offset, y + self.offset, self.img.shape, ) self.img[x - self.offset: x + self.offset, y - self.offset: y + self.offset] += dat @timeit def apply_mask(self, maske): mask = np.empty_like(self.x_index_high, dtype=bool) print(maske) mask[0::2, 0::2] = maske mask[1::2, 0::2] = maske mask[0::2, 1::2] = maske mask[1::2, 1::2] = maske mask = mask.flatten() self.img = np.zeros( (int(self.length_x/self.resolution), int(self.length_y/self.resolution))) self._apply_mask(self.x_index_low, self.y_index_low, self.buffer_low, mask) mask = np.invert(mask) self._apply_mask(self.x_index_high, self.y_index_high, self.buffer_high, mask) @timeit def fft(self): Z_fft = sfft.fft2(self.img) Z_shift = sfft.fftshift(Z_fft) fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution) fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution) fft_freqx_clean = sfft.fftshift(fft_freqx) fft_freqy_clean = sfft.fftshift(fft_freqy) return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2 @timeit def plot(self, ax, scale=None): if scale is None: ax.imshow(self.img) else: quad = np.ones((int(scale / self.resolution), int(scale / self.resolution))) img = scipy.signal.convolve2d(self.img, quad) ax.imshow(img) @timeit def pad_it_square(self, additional_pad=0, size=None): h = self.img.shape[0] w = self.img.shape[1] xx = np.maximum(h, w) + 2 * additional_pad + 1 if size is not None: xx = np.maximum(xx, size) yy = xx a = (xx - h) // 2 aa = xx - a - h b = (yy - w) // 2 bb = yy - b - w self.img = np.pad(self.img, pad_width=( (a, aa), (b, bb)), mode="constant") def gaussian(self, sigma): x = np.linspace(0, self.length_x, self.img.shape[0]) y = np.linspace(0, self.length_y, self.img.shape[1]) X, Y = np.meshgrid(x, y) X = X - (self.length_x / 2.) Y = Y - (self.length_y / 2.) z = 1 / (2 * np.pi * sigma * sigma) * \ np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2))) self.img = np.multiply(self.img, z.T) class SpinImage: resolution = 0.05 def __init__(self, x_pos, y_pos): x_pos = x_pos - np.min(x_pos) y_pos = y_pos - np.min(y_pos) self.length_x = np.max(x_pos) + self.resolution self.length_y = np.max(y_pos) + self.resolution self.img = self.image_from_pos(x_pos, y_pos) def image_from_pos(self, pos_x, pos_y): x_ind = np.arange(0, self.length_x, self.resolution) # angstrom y_ind = np.arange(0, self.length_y, self.resolution) # angstrom img = np.zeros((x_ind.size, y_ind.size)) xind = np.searchsorted(x_ind, pos_x) yind = np.searchsorted(y_ind, pos_y) img[xind, yind] = 1 return img def image_from_pos_with_gauss(self, pos_x, pos_y, sigma=1): x_ind = np.arange(0, self.length_x, self.resolution) # angstrom y_ind = np.arange(0, self.length_y, self.resolution) # angstrom img = np.zeros((x_ind.size, y_ind.size)) X, Y = np.meshgrid(y_ind, x_ind) for px, py in tqdm.tqdm(zip(pos_x.flatten(), pos_y.flatten())): img += np.exp(-0.5 * ((X - px) ** 2 + (Y - py) ** 2) / sigma**2) return img def fft(self): Z_fft = sfft.fft2(self.img) Z_shift = sfft.fftshift(Z_fft) fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution) fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution) fft_freqx_clean = sfft.fftshift(fft_freqx) fft_freqy_clean = sfft.fftshift(fft_freqy) return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2 def pad_it_square(self, additional_pad=0, size=None): h = self.img.shape[0] w = self.img.shape[1] xx = np.maximum(h, w) + 2 * additional_pad + 1 if size is not None: xx = np.maximum(xx, size) yy = xx self.length_x = xx * self.resolution self.length_y = yy * self.resolution a = (xx - h) // 2 aa = xx - a - h b = (yy - w) // 2 bb = yy - b - w self.img = np.pad(self.img, pad_width=( (a, aa), (b, bb)), mode="constant") def pad_it(self, x_size, y_size): h = self.img.shape[0] w = self.img.shape[1] xx = x_size yy = y_size self.length_x = xx * self.resolution self.length_y = yy * self.resolution a = (xx - h) // 2 aa = xx - a - h b = (yy - w) // 2 bb = yy - b - w self.img = np.pad(self.img, pad_width=( (a, aa), (b, bb)), mode="constant") def percentage_gaussian(self, mask, sigma): x = np.linspace(-self.length_x / 2, self.length_x / 2, mask.shape[0]) y = np.linspace(-self.length_y / 2, self.length_y / 2, mask.shape[1]) X, Y = np.meshgrid(x, y) z = 1 / (2 * np.pi * sigma * sigma) * \ np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2))) return np.multiply(mask, z.T) def gaussian(self, sigma): x = np.arange(-self.length_x / 2, self.length_x / 2, self.resolution) y = np.arange(-self.length_y / 2, self.length_y / 2, self.resolution) X, Y = np.meshgrid(x, y) z = 1 / (2 * np.pi * sigma * sigma) * \ np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2))) self.img = np.multiply(self.img, z.T) def plot(self, ax, scale=None): if scale is None: ax.imshow(self.img) else: quad = np.ones((int(scale / self.resolution), int(scale / self.resolution))) img = scipy.signal.convolve2d(self.img, quad) ax.imshow(img) def blur(self, sigma): self.img = scipy.ndimage.gaussian_filter(self.img, sigma)