FFT/clean_python/analysis.py
2023-04-20 20:58:15 +02:00

129 lines
3.3 KiB
Python

import sys
import numpy as np
import matplotlib.pyplot as plt
import glob
import scipy.interpolate as ip
plt.style.use(["style", "colors", "two_column"])
def check_percentage(p1, p2):
plt.figure()
plt.plot(p1, p2)
def merge(files):
merge = []
plt.figure()
for file in files:
print(file)
data = np.load(file, allow_pickle=True)
old_percentage = data["percentage"]
w_percentage = data["w_percentage"]
# check_percentage(old_percentage, w_percentage)
percentage = old_percentage
out = []
for o in ["out_1", "out_2", "out_3", "out_4"]:
out.append(np.array(data[o]))
print(out)
out = np.array(out)[:, :, 0]
summe = np.max(np.sum(out, axis=0))
out = out / summe
merge.append(out)
plt.plot(out[0, :], "r")
plt.plot(out[3, :], "b")
plt.plot(out[2, :], "g")
all = sum(merge)
summe = np.max(np.sum(all, axis=0))
all = all / summe
plt.plot(all[0, :], "k")
plt.plot(all[3, :], "k")
plt.plot(all[2, :], "k")
percentage = 1-percentage
return percentage, all
def debug(percentage, out):
plt.figure()
for o in out:
plt.plot(percentage, o)
plt.plot(percentage, out[0, :], "k")
plt.plot(percentage, out[3, :], "k")
plt.plot(percentage, out[2, :], "k")
def stacked_plot(percentage, out, title=""):
plt.figure()
stacks = plt.stackplot(percentage, out[[0, 3, 1, 2]], colors=[
"w"], ls="solid", ec="k")
hatches = ["/", "", "\\", "\\"]
for stack, hatch in zip(stacks, hatches):
stack.set_hatch(hatch)
plt.xlabel("Metallic Phase (%)")
plt.ylabel("normalized Intensity ")
plt.ylim([0.4, 1])
plt.xlim([0., 1])
plt.tight_layout()
plt.text(0.1, 0.9, "monoclinic", backgroundcolor="w")
plt.text(0.6, 0.5, "rutile", backgroundcolor="w")
plt.text(0.35, 0.75, "diffusive", backgroundcolor="w")
plt.title(title)
plt.savefig("intens.png")
plt.savefig("intens.pdf")
def time_scale(p, o):
rut_perc = o[0]
rut_perc = rut_perc - np.min(rut_perc)
rut_perc /= np.max(rut_perc)
mono_perc = -o[2]
mono_perc = mono_perc - np.min(mono_perc)
mono_perc /= np.max(mono_perc)
# cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1])
# cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1])
cs_rut = ip.interp1d(p[::-1], rut_perc[::-1])
cs_mono = ip.interp1d(p[::-1], mono_perc[::-1])
plt.figure()
ph = np.linspace(0.01, 0.99, 100)
plt.plot(ph, cs_rut(ph))
plt.plot(ph, cs_mono(ph))
time = np.linspace(0.01, 3, 1000)
phy_phase = np.exp(-time)
rut_phase = cs_rut(phy_phase)
mono_phase = cs_mono(phy_phase)
plt.figure()
plt.plot(time, phy_phase, "k:", label="corr.")
plt.plot(time, rut_phase, label="rut.")
plt.plot(time, mono_phase, label="mono")
plt.xlabel("time (a.u.)")
plt.ylabel("Metallic Phase (%)")
plt.legend()
plt.tight_layout()
plt.savefig("timescale.png")
plt.savefig("timescale.pdf")
def read_file(file):
files = np.load("./merged.npz")
p = files["p"]
o = files["o"]
return p, o
if __name__ == "__main__":
p, o = merge(sys.argv[1:])
np.savez("merged.npz", p=p, o=o)
# eval_data_print(f)
stacked_plot(p, o)
time_scale(p, o)
plt.show()