FFT/software/analysis.py
2023-05-03 09:48:15 +02:00

253 lines
7.3 KiB
Python

from ditact_pic import plot
from spin_image import SpinImage, FFT
import sys
import numpy as np
import matplotlib.pyplot as plt
import glob
import scipy.interpolate as ip
from spin_image import SpinImage, FFT
from ditact_pic import plot
from lattices import VO2_Lattice
plt.style.use(["style", "colors", "one_column"])
def check_percentage(p1, p2):
plt.figure()
plt.plot(p1, p2)
def average_mean(arr, window_size=20):
arr_sum = np.cumsum(arr)
arr = (arr_sum[window_size:] - arr_sum[:-window_size]) / window_size
return arr
def new_merge(files):
wp = []
op = []
spot_1 = []
spot_2 = []
spot_3 = []
plt.figure()
for file in files:
print(file)
data = np.load(file, allow_pickle=True)
old_percentage = data["percentage"]
w_percentage = data["w_percentage"]
wp.append(w_percentage)
op.append(old_percentage)
# check_percentage(old_percentage, w_percentage)
out = []
for o in ["out_1", "out_2", "out_3", "out_4"]:
out.append(np.array(data[o]))
print(out)
out = np.array(out)[:, :, 0]
spot_1.append(out[0, :])
spot_2.append(out[3, :])
spot_3.append(out[2, :])
wp = np.concatenate(wp, axis=0)
op = np.concatenate(op, axis=0)
spot_1 = np.concatenate(spot_1, axis=0)
spot_2 = np.concatenate(spot_2, axis=0)
spot_3 = np.concatenate(spot_3, axis=0)
arg_sort = np.argsort(op)
wp = wp[arg_sort]
op = op[arg_sort]
spot_1 = spot_1[arg_sort]
spot_2 = spot_2[arg_sort]
spot_3 = spot_3[arg_sort]
win = 100
wp = average_mean(wp, win)
op = average_mean(op, win)
spot_1 = average_mean(spot_1, win)
spot_2 = average_mean(spot_2, win)
spot_3 = average_mean(spot_3, win)
x = op
plt.plot(x, spot_1, "r.")
plt.plot(x, spot_2, "g.")
plt.plot(x, spot_3, "b.")
ma = np.max(spot_1+spot_2+spot_3)
spot_1 /= ma
spot_2 /= ma
spot_3 /= ma
print("debug....")
print(wp.shape)
plt.savefig("debug.png")
return op, np.stack([spot_2, spot_1, spot_3])
def merge(files):
merge = []
plt.figure()
for file in files:
print(file)
data = np.load(file, allow_pickle=True)
old_percentage = data["percentage"]
w_percentage = data["w_percentage"]
# check_percentage(old_percentage, w_percentage)
percentage = old_percentage
out = []
for o in ["out_1", "out_2", "out_3", "out_4"]:
out.append(np.array(data[o]))
print(out)
out = np.array(out)[:, :, 0]
summe = np.max(np.sum(out, axis=0))
out = out / summe
merge.append(out)
plt.plot(w_percentage, out[0, :], "r.")
plt.plot(w_percentage, out[3, :], "b.")
plt.plot(w_percentage, out[2, :], "g.")
all = sum(merge)
summe = np.max(np.sum(all, axis=0))
all = all / summe
# plt.plot(all[0, :], "k")
# plt.plot(all[3, :], "k")
# plt.plot(all[2, :], "k")
plt.savefig("debug.png")
percentage = 1-percentage
return percentage, all
def debug(percentage, out):
plt.figure()
for o in out:
plt.plot(percentage, o)
plt.plot(percentage, out[0, :], "k")
plt.plot(percentage, out[3, :], "k")
plt.plot(percentage, out[2, :], "k")
def stacked_plot(ax, percentage, out, title=""):
stacks = ax.stackplot(percentage, out[[0, 1, 2]], colors=[
"w"], ls=(0, (0, 1)), ec="w")
hatches = ["//", "|", "\\\\"]
for stack, hatch, color in zip(stacks, hatches, ["C1", "C0", "C2"]):
stack.set_hatch(hatch)
stack.set_edgecolor(color)
ax.set_xlabel("Metallic Phase (%)")
ax.set_ylabel("normalized Intensity ")
ax.set_ylim([0.4, 1])
ax.set_xlim([0., 1])
ax.text(0.1, 0.9, "monoclinic", backgroundcolor="w",
bbox=dict(boxstyle='square,pad=0.0', ec="None", fc="w"))
ax.text(0.6, 0.5, "rutile", backgroundcolor="w",
bbox=dict(boxstyle='square,pad=0.0', ec="None", fc="w"))
ax.text(0.35, 0.73, "diffusive", backgroundcolor="w",
bbox=dict(boxstyle='square,pad=0.0', ec="None", fc="w"))
ax.stackplot(percentage, out[[0, 1, 2]], colors=["None"], ec="k")
def time_scale(ax, p, o):
rut_perc = o[0]
rut_perc = rut_perc - np.min(rut_perc)
rut_perc /= np.max(rut_perc)
mono_perc = -o[2]
mono_perc = mono_perc - np.min(mono_perc)
mono_perc /= np.max(mono_perc)
# cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1])
# cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1])
cs_rut = ip.interp1d(p[::-1], rut_perc[::-1])
cs_mono = ip.interp1d(p[::-1], mono_perc[::-1])
# plt.figure()
# ph = np.linspace(0.01, 0.99, 100)
# plt.plot(ph, cs_rut(ph))
# plt.plot(ph, cs_mono(ph))
time = np.linspace(0.01, 3, 1000)
phy_phase = 1-np.exp(-time)
rut_phase = cs_rut(phy_phase)
mono_phase = cs_mono(phy_phase)
ax.plot(time, phy_phase, "k:", label="physical")
ax.plot(time, rut_phase, label="rutile", color="C1")
ax.plot(time, mono_phase, label="monoclinic", color="C2")
ax.set_xlabel("time (a.u.)")
ax.set_ylabel("Metallic Phase (%)")
ax.set_xlim([0, 3])
ax.set_ylim([0, 1])
ax.legend()
def read_file(file):
files = np.load("./merged.npz")
p = files["p"]
o = files["o"]
return p, o
def intens(ax, file, p, o):
intens = FFT()
intens.load(file)
plot(intens, ax)
ax.set_xlim([-1, 1])
ax.set_ylim([-.9, .9])
ax.axis("off")
# rect = plt.Rectangle((-1, -.8), 2, 1.6, facecolor="None", hatch="//")
# ax.add_patch(rect)
lat = VO2_Lattice(20, 20)
reci = lat.get_spots()
print(reci)
size = (intens.freqx[1] - intens.freqx[0]) * 20
size2 = size/2
# big_rect = plt.Rectangle((-10, -10), 20, 20, fc="None", ec="k", hatch="//")
# ax.add_patch(big_rect)
for x, y in zip(reci[0][0], reci[0][1]):
if x < 1 and x > -1:
if y < 1 and y > -1:
print(x, y)
rect = plt.Rectangle((-y-size2, x-size2),
size, size, fc="C1", ec="k", alpha=0.5)
# big_rect.set_clip_path(rect)
ax.add_patch(rect)
for x, y in zip(reci[1][0], reci[1][1]):
if x < 1 and x > -1:
if y < 1 and y > -1:
print(x, y)
rect = plt.Rectangle((-y-size2, x-size2),
size, size, fc="C2", ec="k", alpha=0.5)
ax.add_patch(rect)
axins = ax.inset_axes([0.0, 0.0, 0.5, 0.5])
axins.plot(p, o[0], label="rut.", color="C1")
axins.plot(p, o[2], label="mono.", color="C2")
axins.plot(p, o[1], label="diff.", color="C0")
axins.legend(loc='center left', bbox_to_anchor=(1, 0.5))
axins.set_xlim([0, 1])
axins.set_ylim([0, 1])
axins.set_xlabel("phase (%)")
axins.set_ylabel("signal", labelpad=-5)
# axins.get_yaxis().set_visible(False)
# axins.yaxis.tick_right()
axins.set_yticks([0, 1])
if __name__ == "__main__":
p, o = new_merge(sys.argv[2:])
np.savez("merged.npz", p=p, o=o)
fig, axs = plt.subplots(1, 3)
fig.set_figheight(2)
stacked_plot(axs[1], p, o)
time_scale(axs[2], p, o)
if "intens" in sys.argv[1]:
intens(axs[0], sys.argv[1], p, o)
plt.tight_layout()
plt.savefig("analysis.pdf")
plt.savefig("analysis.png")
plt.show()