FFT/cal.py
2023-02-14 18:08:15 +01:00

183 lines
5.0 KiB
Python

import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
import scipy
import scipy.fftpack as sfft
def deg_2_rad(winkel):
return winkel/180.0 * np.pi
# all units in angstrom
base_a_m = 5.75
base_b_m = 4.5
base_c_m = 5.38
base_c_r = 2.856
base_b_r = 4.554
base_a_r = base_b_r
alpha_m = 122.64 # degree
def mono_2_rutile(c_m, a_m):
a_r = np.cos(deg_2_rad(alpha_m - 90)) * c_m * base_c_m
c_r = (a_m) * base_a_m + np.sin(deg_2_rad(alpha_m - 90)) * c_m * base_c_m
return a_r, c_r
class Lattice:
def _get_rutile(self, X, Y):
self.atom_x_rut = X * base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
self.atom_y_rut = Y * 0.5 * base_a_r
def _get_mono(self, X, Y):
offset_a_m = 0.25 - 0.23947
offset_c_m = 0.02646
offset_a_r, offset_c_r = mono_2_rutile(offset_c_m, offset_a_m)
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
self.atom_x_mono = offset_a_r + X * \
base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
self.atom_x_mono[np.mod(X, 2) == 0] -= 2 * offset_a_r
self.atom_y_mono = offset_c_r + 0.5 * Y * base_a_r
self.atom_y_mono[np.mod(X, 2) == 0] -= 2 * offset_c_r
def _generate_vec(self, x_len: int, y_len: int):
x = np.arange(x_len)
y = np.arange(y_len)
X, Y = np.meshgrid(x, y)
X[np.mod(Y, 4) == 3] = X[np.mod(Y, 4) == 3]-1
X[np.mod(Y, 4) == 2] = X[np.mod(Y, 4) == 2]-1
assert np.mod(x.size, 2) == 0
assert np.mod(y.size, 2) == 0
return X, Y
def __init__(self, x_len: int, y_len: int):
X, Y = self._generate_vec(x_len*2, y_len*2)
self._get_mono(X, Y)
self._get_rutile(X, Y)
def get_from_mask(self, maske: np.array, inplace_pos_x=None, inplace_pos_y=None):
if inplace_pos_x is None:
inplace_pos_x = np.zeros_like(self.atom_x_mono)
if inplace_pos_y is None:
inplace_pos_y = np.zeros_like(self.atom_x_mono)
mask = np.empty_like(self.atom_x_mono, dtype=bool)
print(mask.shape, maske.shape)
mask[0::2, 0::2] = maske
mask[1::2, 0::2] = maske
mask[0::2, 1::2] = maske
mask[1::2, 1::2] = maske
inplace_pos_x[mask] = self.atom_x_rut[mask]
inplace_pos_y[mask] = self.atom_y_rut[mask]
mask = np.invert(mask)
inplace_pos_x[mask] = self.atom_x_mono[mask]
inplace_pos_y[mask] = self.atom_y_mono[mask]
return inplace_pos_x, inplace_pos_y
def test_lattice():
lat = Lattice(10, 10)
maske = np.zeros((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
plt.scatter(x, y)
maske = np.invert(maske)
x, y = lat.get_from_mask(maske)
plt.scatter(x, y)
maske[:3, :5] = False
x, y = lat.get_from_mask(maske)
plt.scatter(x, y)
plt.show()
RESOLUTION = 0.1
def image_from_pos(pos_x, pos_y):
length_x = np.max(pos_x) + RESOLUTION
length_y = np.max(pos_y) + RESOLUTION
x_ind = np.arange(0, length_x, RESOLUTION) # angstrom
y_ind = np.arange(0, length_y, RESOLUTION) # angstrom
img = np.zeros((x_ind.size, y_ind.size))
xind = np.searchsorted(x_ind, pos_x)
yind = np.searchsorted(y_ind, pos_y)
img[xind, yind] = 1
return img
def test_img():
lat = Lattice(10, 10)
maske = np.ones((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
img = image_from_pos(x, y)
plt.imshow(img.T, origin="lower", extent=(0, np.max(x), 0, np.max(y)))
plt.scatter(x, y)
plt.show()
def fft(img):
Z_fft = sfft.fft2(img)
Z_shift = sfft.fftshift(Z_fft)
fft_freqx = sfft.fftfreq(img.shape[0], RESOLUTION)
fft_freqy = sfft.fftfreq(img.shape[1], RESOLUTION)
fft_freqx_clean = sfft.fftshift(fft_freqx)
fft_freqy_clean = sfft.fftshift(fft_freqy)
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
def gaussian(img):
ratio = img.shape[0] / img.shape[1]
x = np.linspace(-ratio, ratio, img.shape[0])
y = np.linspace(-1, 1, img.shape[1])
X, Y = np.meshgrid(x, y)
sigma = 0.3
z = (1/(2*np.pi*sigma*sigma) * np.exp(-(X**2/(2*sigma**2)
+ Y**2/(2*sigma**2))))
return np.multiply(img, z.T)
def main():
lat = Lattice(10, 10)
maske = np.ones((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
img = image_from_pos(x, y)
fig, [axs,axs2] = plt.subplots(2, 3)
axs[0].imshow(img)
img = gaussian(img)
axs[1].imshow(img)
plt.pause(.1)
freqx, freqy, intens = fft(img)
axs[2].imshow(intens, extent = (np.min(freqx), np.max(
freqx), np.min(freqy), np.max(freqy)))
maske = np.zeros((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
img = image_from_pos(x, y)
axs2[0].imshow(img)
img = gaussian(img)
axs2[1].imshow(img)
plt.pause(.1)
freqx, freqy, intens = fft(img)
axs2[2].imshow(intens, extent = (np.min(freqx), np.max(
freqx), np.min(freqy), np.max(freqy)))
plt.show()
if __name__ == "__main__":
main()