203 lines
5.0 KiB
Python
203 lines
5.0 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import tqdm
|
|
|
|
import multiprocessing as mp
|
|
|
|
RESOLUTION = 0.01
|
|
LENGTH = 500
|
|
|
|
|
|
def generate_image_from_mask(mask: np.array):
|
|
pos_mono = np.arange(0, mask.size * 2.89 * 2, 2.89)
|
|
pos_mono[::2][mask] -= 0.27
|
|
pos_mono[1::2][mask] += 0.27
|
|
return pos_mono
|
|
|
|
|
|
def pad_zero(img, length):
|
|
pad = np.zeros(length)
|
|
img = np.append(img, pad)
|
|
img = np.append(pad, img)
|
|
return img
|
|
|
|
|
|
def image_from_pos(pos):
|
|
length = np.max(pos) + RESOLUTION
|
|
x = np.arange(0, length, RESOLUTION) # angstrom
|
|
y = np.zeros_like(x)
|
|
ind = np.searchsorted(x, pos)
|
|
y[ind] = 1
|
|
return y
|
|
|
|
|
|
def beugung(y, resolution):
|
|
fft = np.fft.fft(y)
|
|
fft_clean = np.fft.fftshift(fft)
|
|
fft_freq = np.fft.fftfreq(y.size, resolution)
|
|
fft_freq_clean = np.fft.fftshift(fft_freq)
|
|
return fft_freq_clean, np.abs(fft_clean) ** 2
|
|
|
|
|
|
def gaussian_convol(img):
|
|
sigma = 100 / RESOLUTION
|
|
mu = img.size/2
|
|
x = np.arange(0, img.size)
|
|
gauss = 1/(sigma * np.sqrt(2 * np.pi)) * \
|
|
np.exp(- (x - mu)**2 / (2 * sigma**2))
|
|
|
|
return img*gauss
|
|
|
|
|
|
def analyisis(mask):
|
|
pos_h = generate_image_from_mask(mask)
|
|
img = image_from_pos(pos_h)
|
|
img = gaussian_convol(img)
|
|
padded = pad_zero(img, int(100 / RESOLUTION))
|
|
freq, intens = beugung(padded, RESOLUTION)
|
|
return freq, intens
|
|
|
|
|
|
def get_peaks():
|
|
orders = np.arange(1, 2, 1)
|
|
orders = orders / 5.78
|
|
return np.array(orders)
|
|
|
|
|
|
def eval_peaks(freq, fft):
|
|
orders = get_peaks()
|
|
ind = np.searchsorted(freq, orders)
|
|
return fft[ind]
|
|
|
|
|
|
def basic_test():
|
|
mask_h = np.zeros(LENGTH).astype(bool)
|
|
mask_l = np.ones(LENGTH).astype(bool)
|
|
|
|
mask_mixed = np.zeros(LENGTH).astype(bool)
|
|
ind = (np.random.rand(30) * (LENGTH - 1)).astype(int)
|
|
mask_mixed[ind] = True
|
|
|
|
mask_ner = np.zeros(LENGTH).astype(bool)
|
|
ind = (np.random.rand(1) * (LENGTH - 31)).astype(int)
|
|
ind = np.arange(ind, ind+30).astype(int)
|
|
mask_ner[ind] = True
|
|
|
|
fig, axs = plt.subplots(4, 1)
|
|
for mask, ax in zip([mask_h, mask_l, mask_mixed, mask_ner], axs):
|
|
freq, ffty = analyisis(mask)
|
|
ax.plot(freq, ffty)
|
|
for ax in axs:
|
|
ax.plot([1.0 / 5.78, 1.0 / 2.62, 1.0 / 3.16], [0, 0, 0], "kx")
|
|
ax.plot([2.0 / 5.78, 2.0 / 2.62, 2.0 / 3.16], [0, 0, 0], "rx")
|
|
ax.plot([3.0 / 5.78, 3.0 / 2.62, 3.0 / 3.16], [0, 0, 0], "bx")
|
|
ax.set_xlim(0, 3)
|
|
plt.show()
|
|
|
|
|
|
def norm(arr):
|
|
return arr/np.sum(arr)
|
|
|
|
|
|
def norm2(arr):
|
|
return arr
|
|
# return arr/np.max(arr)
|
|
|
|
|
|
def next_mask(mask):
|
|
prob = np.exp((np.roll(mask, 1)*1.0 + np.roll(mask, -1)) / .1)
|
|
prob[mask] = 0.0
|
|
prob = norm(prob)
|
|
|
|
ind = np.random.choice(LENGTH, p=prob)
|
|
mask[ind] = True
|
|
return mask
|
|
|
|
|
|
def random_loop():
|
|
mask = np.zeros(LENGTH).astype(bool)
|
|
ind = np.arange(0, LENGTH)
|
|
np.random.shuffle(ind)
|
|
percentage = []
|
|
peaks = []
|
|
|
|
masks = []
|
|
for i in ind:
|
|
mask[i] = True
|
|
freq, fft = analyisis(mask)
|
|
peak = eval_peaks(freq, fft)
|
|
percentage.append(np.mean(mask))
|
|
peaks.append(peak)
|
|
masks.append(mask.copy())
|
|
masks = np.array(masks)
|
|
plt.figure()
|
|
plt.imshow(masks)
|
|
plt.plot([0, 500], [406, 406])
|
|
print()
|
|
percentage = np.array(percentage)
|
|
peaks = np.array(peaks)
|
|
return percentage, peaks
|
|
|
|
|
|
def nearest_loop():
|
|
mask = np.zeros(LENGTH).astype(bool)
|
|
percentage = []
|
|
peaks = []
|
|
for i in range(LENGTH):
|
|
mask = next_mask(mask)
|
|
freq, fft = analyisis(mask)
|
|
peak = eval_peaks(freq, fft)
|
|
percentage.append(np.mean(mask))
|
|
peaks.append(peak)
|
|
percentage = np.array(percentage)
|
|
peaks = np.array(peaks)
|
|
return percentage, peaks
|
|
|
|
|
|
def random_helper(seed):
|
|
np.random.seed(seed)
|
|
#percentage_near, peaks_near = nearest_loop()
|
|
percentage_rand, peaks_rand = random_loop()
|
|
print("done")
|
|
return percentage_rand, peaks_rand
|
|
# for i in range(peaks_near.shape[1]):
|
|
# axs[2].plot(percentage_near, norm2(
|
|
# peaks_near[:, i]), "-", label="near")
|
|
|
|
# for i in range(peaks_rand.shape[1]):
|
|
# axs[2].plot(percentage_rand, norm2(
|
|
# peaks_rand[:, i]), ":", label="rand")
|
|
|
|
|
|
def random_increase():
|
|
fig, axs = plt.subplots(3, 1)
|
|
|
|
results = []
|
|
for i in np.arange(10):
|
|
results.append(random_helper(i))
|
|
|
|
for percentage_rand, peaks_rand in results:
|
|
for i in range(peaks_rand.shape[1]):
|
|
axs[2].plot(percentage_rand, norm2(
|
|
peaks_rand[:, i]), ":", label="rand")
|
|
|
|
for ax in [axs[0], axs[1]]:
|
|
orders = get_peaks()
|
|
ax.plot(orders, np.zeros_like(orders), "kx")
|
|
ax.set_xlim(0, 3)
|
|
|
|
mask_l = np.ones(LENGTH).astype(bool)
|
|
mask_h = np.zeros(LENGTH).astype(bool)
|
|
freq, ffty = analyisis(mask_l)
|
|
axs[0].plot(freq, ffty)
|
|
freq, ffty = analyisis(mask_h)
|
|
axs[1].plot(freq, ffty)
|
|
plt.xlabel("percentage")
|
|
plt.ylabel("peak intensity")
|
|
plt.show()
|
|
plt.legend()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
random_increase()
|