import numpy as np from datetime import datetime, timedelta class PlotData(): def __init__(self): #resolution * timeout must be at least 2-3 times higher then the slowest refresh rate self.resolution = 100 # ms self.timeout = 100 #cycles self.data = {"time": np.array([])} self.start_time = datetime.utcnow() self.queues = {} def clear(self): print("clear") for key in self.data: self.data[key] = np.array([]) self.start_time = datetime.utcnow() def get(self, key): return self.data.get(key, np.full_like(self.data["time"], np.nan, dtype=np.double)) def append_data(self, sensor_name, data): """ """ if sensor_name not in self.data: self.queues[sensor_name] = ([],[]) self.data[sensor_name] = np.full_like(self.data["time"], np.nan, dtype=np.double) for time, dat in zip(data[0], data[1]): self.queues[sensor_name][0].append((time-self.start_time)/ timedelta(milliseconds=self.resolution)) self.queues[sensor_name][1].append(dat) self.extend_timeline() self.sort_in_queue() #self.drop_old() def extend_timeline(self): #extend numpy arrays with passed time #unknown values are filled with nans end = (datetime.utcnow()-self.start_time)/timedelta(milliseconds=self.resolution) print(end, self.start_time) self.data["time"] = np.arange(0, end, 1).astype(np.double) for key in self.data: if key != "time": pad_length = self.data["time"].size-self.data[key].size self.data[key] = np.pad(self.data[key], (0,pad_length), mode="constant", constant_values=np.nan) def sort_in_queue(self): #linear interpolation and adding it to the array for key in self.queues: time = np.array(self.queues[key][0]) data = np.array(self.queues[key][1]) if time.size > 1: inter = np.interp(self.data["time"], time, data) self.data[key] = inter#np.where(np.isnan(inter), self.data[key], inter) def drop_old(self): for key in self.queues: time = np.array(self.queues[key][0]) old = self.data["time"][-1]-(self.timeout) if time.size>2: drop_index = (np.where(time < old)[0])[-1] self.queues[key] = (self.queues[key][0][drop_index:],self.queues[key][1][drop_index:])