172 lines
6.7 KiB
C++
172 lines
6.7 KiB
C++
//
|
|
// Created by jholder on 21.10.21.
|
|
//
|
|
|
|
#include "Integratoren2d_force.h"
|
|
|
|
constexpr double kBT = 1.0;
|
|
using Vector = Eigen::Vector2d;
|
|
|
|
|
|
Vector Integratoren2d_force::ortho(Vector e) {
|
|
return Vector{-e[1], e[0]};
|
|
}
|
|
|
|
Eigen::Matrix2d Integratoren2d_force::MatTraf(Vector e) {
|
|
Eigen::Matrix2d mat;
|
|
mat << e[0], -e[1],
|
|
e[1], e[0];
|
|
return mat;
|
|
}
|
|
|
|
void Integratoren2d_force::Set0_deterministic(Rod2d &rod2D, Simulation & /*sim*/) {
|
|
auto trans_lab = Vector({0, 0.01});
|
|
rod2D.setPos(rod2D.getPos() + trans_lab);
|
|
Eigen::Rotation2D<double> rot(0.1);
|
|
rod2D.setE(rot * rod2D.getE());
|
|
}
|
|
|
|
const Vector Integratoren2d_force::unitVec = {1, 0};
|
|
|
|
|
|
void Integratoren2d_force::Set5_MBD(Rod2d &/*rod2D*/, Simulation &/*sim*/) {
|
|
}
|
|
|
|
void Integratoren2d_force::Set1_Euler(Rod2d &rod2D, Simulation &sim,
|
|
const std::function<Vector(Vector, Vector)> &force,
|
|
const std::function<double(Vector, Vector)> &torque) {
|
|
auto std = sim.getSTD(); // sqrt(2*delta_T)
|
|
//translation
|
|
Vector rand = {sim.getNorm(std), sim.getNorm(std)}; //gaussian noise
|
|
Vector trans_part = rod2D.getDiff_Sqrt() * rand; //translation vector in Particle System
|
|
Vector trans_lab = rod2D.getE_Base_matrix() * trans_part;
|
|
|
|
//Force
|
|
Vector F_lab = force(rod2D.getPos(), rod2D.getE());
|
|
Vector F_part = rod2D.getE_Base_matrix().inverse() * F_lab;
|
|
Vector F_trans = rod2D.getDiff_Sqrt() * F_part;
|
|
F_trans *= sim.getMDeltaT() / kBT;
|
|
|
|
|
|
//rotation
|
|
double rot = sim.getNorm(std) * rod2D.getDRot_Sqrt();// rotationsmatrix verwenden.
|
|
Vector e = rod2D.getE();
|
|
double M_rot = torque(rod2D.getPos(), rod2D.getE()) * rod2D.getDRot() / kBT * sim.getMDeltaT();
|
|
Vector new_e = e + (rot + M_rot) * ortho(e);
|
|
new_e.normalize();
|
|
//apply
|
|
rod2D.setPos(rod2D.getPos() + trans_lab + F_trans);
|
|
rod2D.setE(new_e);
|
|
}
|
|
|
|
Vector Integratoren2d_force::Heun_predictor_pos(const Rod2d &rod2D, Simulation &sim,
|
|
const std::function<Vector(Vector, Vector)> &force) {
|
|
auto standard_dev = sim.getSTD();
|
|
Vector rand_pred = {sim.getNorm(standard_dev), sim.getNorm(standard_dev)}; //gaussian noise
|
|
Vector trans_pred_part = rod2D.getDiff_Sqrt() * rand_pred; //translation vector in Particle System
|
|
Vector trans_pred_lab = rod2D.getE_Base_matrix() * trans_pred_part;
|
|
|
|
Vector F_pred_lab = force(rod2D.getPos(), rod2D.getE());
|
|
Vector F_pred_part = rod2D.getE_Base_matrix().inverse() * F_pred_lab;
|
|
Vector F_pred_trans = rod2D.getDiff_Sqrt() * F_pred_part;
|
|
F_pred_trans *= sim.getMDeltaT() / kBT;
|
|
|
|
return F_pred_trans + trans_pred_lab;
|
|
}
|
|
|
|
Vector Integratoren2d_force::Heun_predictor_rot(const Rod2d &rod2D, Simulation &sim,
|
|
const std::function<double(Vector, Vector)> &torque) {
|
|
auto std = sim.getSTD();
|
|
double rot_predict = sim.getNorm(std) * rod2D.getDRot_Sqrt();// rotationsmatrix verwenden.
|
|
Vector e = rod2D.getE();
|
|
double M_predict_rot = torque(rod2D.getPos(), rod2D.getE()) * rod2D.getDRot() / kBT * sim.getMDeltaT();
|
|
Vector e_change_predict = (rot_predict + M_predict_rot) * ortho(e);
|
|
|
|
return e_change_predict;
|
|
}
|
|
|
|
|
|
void Integratoren2d_force::Set2_Heun(Rod2d &rod2D, Simulation &sim,
|
|
const std::function<Vector(Vector, Vector)> &force,
|
|
const std::function<double(Vector, Vector)> &torque) {
|
|
|
|
Vector delta_pos_predictor = Heun_predictor_pos(rod2D, sim, force);
|
|
Vector pos_predictor = rod2D.getPos() + delta_pos_predictor;
|
|
|
|
Vector delta_e_predictor = Heun_predictor_rot(rod2D, sim, torque);
|
|
Vector e_predict = rod2D.getE() + delta_e_predictor;
|
|
e_predict.normalize();
|
|
|
|
|
|
Rod2d pred_rod = rod2D;
|
|
pred_rod.setPos(pos_predictor);
|
|
pred_rod.setE(e_predict);
|
|
|
|
Vector delta_pos_future = Heun_predictor_pos(pred_rod, sim, force);
|
|
Vector delta_e_future = Heun_predictor_rot(pred_rod, sim, torque);
|
|
|
|
//integration
|
|
Vector pos_integrated = 0.5 * rod2D.getPos() + 0.5 * pos_predictor + 0.5 * delta_pos_future;
|
|
Vector e_integrated = rod2D.getE() + 0.5 * (delta_e_predictor + delta_e_future);
|
|
//apply
|
|
rod2D.setPos(pos_integrated);
|
|
rod2D.setE(e_integrated.normalized());
|
|
}
|
|
|
|
void Integratoren2d_force::Set3_Exact(Rod2d &rod2D, Simulation &sim,
|
|
std::function<Eigen::Vector2d(Eigen::Vector2d, Eigen::Vector2d)> force,
|
|
std::function<double(Eigen::Vector2d, Eigen::Vector2d)> torque) {
|
|
auto std = sim.getSTD(); // sqrt(2*delta_T)
|
|
//translation
|
|
Vector rand = {sim.getNorm(std), sim.getNorm(std)}; //gaussian noise
|
|
Vector trans_part = rod2D.getDiff_Sqrt() * rand; //translation vector in Particle System
|
|
|
|
Vector F_lab = force(rod2D.getPos(), rod2D.getE());
|
|
Vector F_part = rod2D.getE_Base_matrix().inverse() * F_lab;
|
|
|
|
Vector F_trans = rod2D.getDiff_Sqrt() * F_part;
|
|
F_trans *= sim.getMDeltaT() / kBT;
|
|
Vector trans_lab = rod2D.getE_Base_matrix() * trans_part;
|
|
|
|
//rotation
|
|
double rot = sim.getNorm(std) * rod2D.getDRot_Sqrt();// rotationsmatrix verwenden.
|
|
Vector e = rod2D.getE();
|
|
double M_rot = torque(rod2D.getPos(), rod2D.getE()) * rod2D.getDRot() / kBT * sim.getMDeltaT();
|
|
auto correction = -0.5 * pow(rod2D.getDRot(), 2) / pow(kBT, 2) * sim.getMDeltaT();
|
|
Vector new_e = e + (rot + M_rot) * ortho(e) + correction * e;
|
|
new_e.normalize();
|
|
//apply
|
|
rod2D.setPos(rod2D.getPos() + trans_lab + F_trans);
|
|
rod2D.setE(new_e);
|
|
}
|
|
|
|
void Integratoren2d_force::Set4_BDAS(Rod2d &rod2D, Simulation &sim,
|
|
std::function<Eigen::Vector2d(Eigen::Vector2d, Eigen::Vector2d)> force,
|
|
std::function<double(Eigen::Vector2d, Eigen::Vector2d)> /*torque*/) {
|
|
auto std = sim.getSTD();
|
|
//translation
|
|
auto rand = Vector(sim.getNorm(std), sim.getNorm(std));
|
|
auto trans_part = rod2D.getDiff_Sqrt() * rand; //translation vector in Particle System
|
|
Eigen::Rotation2D rotMat(acos(unitVec.dot(rod2D.getE())));
|
|
auto trans_lab = rotMat * trans_part;
|
|
|
|
Vector F_lab = force(rod2D.getPos(), rod2D.getE());
|
|
Vector F_part = rotMat.inverse() * F_lab;
|
|
|
|
Vector F_trans = rod2D.getDiff_Sqrt() * F_part;
|
|
F_trans *= sim.getMDeltaT() / kBT;
|
|
|
|
|
|
auto rot = Eigen::Rotation2D<double>(sim.getNorm(std) * rod2D.getDRot_Sqrt());
|
|
Eigen::Rotation2Dd rotation(rot);
|
|
auto e_new = (rotation.toRotationMatrix() * rod2D.getE()).normalized();
|
|
|
|
// Normalisation should not be necessary if a proper angular representation is used.
|
|
// But with vector e it is done in case of numerical errors
|
|
|
|
rod2D.setPos(rod2D.getPos() + trans_lab);
|
|
rod2D.setE(e_new);
|
|
}
|
|
|
|
|