added voronoi
This commit is contained in:
parent
524a4f8174
commit
4d37942649
81
2d_fourie/analysis.py
Normal file
81
2d_fourie/analysis.py
Normal file
@ -0,0 +1,81 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import glob
|
||||
|
||||
|
||||
def eval_data(file):
|
||||
data = np.load(file)
|
||||
percentage = data["percentage"]
|
||||
out = data["out"]
|
||||
out = np.array(out)
|
||||
print(out.shape)
|
||||
fig, all_axs = plt.subplots(2, out.shape[0])
|
||||
axs = all_axs[0, :]
|
||||
axs2 = all_axs[1, :]
|
||||
for o, ax, ax2, lab in zip(out, axs, axs2, ["rutile", "mono_twin", "mono"]):
|
||||
# ax.plot(percentage, o/np.max(o, axis=0))
|
||||
ax.plot(percentage, o/o[0])
|
||||
# ax.plot(percentage, o)
|
||||
o = np.mean(o, axis=1)
|
||||
o = o/o[0]
|
||||
ax2.plot(percentage, o)
|
||||
ax2.plot([0, 1], [o[0], o[-1]], "k:")
|
||||
ax.set_title(lab)
|
||||
if "ising" in file:
|
||||
fig.suptitle("Ising")
|
||||
else:
|
||||
fig.suptitle("Random")
|
||||
fig.savefig(f"{file}.png")
|
||||
|
||||
|
||||
def parse_lists(out):
|
||||
lists = []
|
||||
for o in out:
|
||||
lists.append(np.stack(o))
|
||||
|
||||
max = 0
|
||||
for l in lists:
|
||||
print(l.shape)
|
||||
if max < l.shape[1]:
|
||||
max = l.shape[1]
|
||||
lists = [np.pad(l, ((0, 0), (0, max-l.shape[1]))) for l in lists]
|
||||
for l in lists:
|
||||
print(l.shape)
|
||||
return np.stack(lists)
|
||||
|
||||
|
||||
def eval_data_print(file):
|
||||
data = np.load(file, allow_pickle=True)
|
||||
percentage = data["percentage"]
|
||||
out = parse_lists(data["out"])
|
||||
out = np.array(out)
|
||||
print(out.shape)
|
||||
out = out[[0, 2], :, :]
|
||||
print(out.shape)
|
||||
fig, all_axs = plt.subplots(2, out.shape[0])
|
||||
axs = all_axs[0, :]
|
||||
axs2 = all_axs[1, :]
|
||||
for o, ax, ax2, lab in zip(out, axs, axs2, ["rutile", "monoclinic", "mono"]):
|
||||
# ax.plot(percentage, o/np.max(o, axis=0))
|
||||
ax.plot(percentage, o/o[0])
|
||||
# ax.plot(percentage, o)
|
||||
o = np.mean(o, axis=1)
|
||||
o = o/o[0]
|
||||
ax2.plot(percentage, o)
|
||||
ax2.plot([0, 1], [o[0], o[-1]], "k:")
|
||||
ax.set_title(lab)
|
||||
if "ising" in file:
|
||||
fig.suptitle("Ising")
|
||||
else:
|
||||
fig.suptitle("Random")
|
||||
for ax in all_axs.flatten():
|
||||
ax.set_xlabel("Rutile Phase")
|
||||
ax.set_ylabel("Normalized Intensity")
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for f in glob.glob("*.npz"):
|
||||
eval_data_print(f)
|
||||
plt.show()
|
195
2d_fourie/extractors.py
Normal file
195
2d_fourie/extractors.py
Normal file
@ -0,0 +1,195 @@
|
||||
import numpy as np
|
||||
from scipy.spatial import Voronoi
|
||||
import cv2
|
||||
|
||||
|
||||
class Image_Wrapper:
|
||||
def __init__(self, img, x_lower, x_res, y_lower, y_res):
|
||||
self.img = img
|
||||
self.x_lower = x_lower
|
||||
self.y_lower = y_lower
|
||||
self.x_res = x_res
|
||||
self.y_res = y_res
|
||||
|
||||
self.x_upper = self.x_lower + self.img.shape[0]*self.x_res - self.x_res
|
||||
self.y_upper = self.y_lower + self.img.shape[1]*self.y_res - self.x_res
|
||||
|
||||
def __init__(self, img, fx, fy):
|
||||
self.img = img
|
||||
self.x_lower = np.min(fx)
|
||||
self.y_lower = np.min(fy)
|
||||
self.x_upper = np.max(fx)
|
||||
self.y_upper = np.max(fy)
|
||||
|
||||
self.x_res = (self.x_upper - self.x_lower) / self.img.shape[0]
|
||||
self.y_res = (self.y_upper - self.y_lower) / self.img.shape[0]
|
||||
|
||||
def val2pos(self, x, y):
|
||||
x = (x - self.x_lower) / self.x_res
|
||||
y = (y - self.y_lower) / self.y_res
|
||||
return x, y
|
||||
|
||||
def check_bounds(self, xl, yl, xu, yu):
|
||||
if xl > self.img.shape[0]:
|
||||
print("xl lim")
|
||||
return False
|
||||
if yl > self.img.shape[1]:
|
||||
print("yl lim")
|
||||
return False
|
||||
if xu < 0:
|
||||
print("xu lim")
|
||||
return False
|
||||
if yu < 0:
|
||||
print("yu lim")
|
||||
return False
|
||||
return True
|
||||
|
||||
def clean_bounds(self, xl, yl, xu, yu):
|
||||
if xl < 0:
|
||||
xl = 0
|
||||
if yl < 0:
|
||||
yl = 0
|
||||
|
||||
if xu > self.img.shape[0]:
|
||||
xu = self.img.shape[0]
|
||||
if yu > self.img.shape[1]:
|
||||
yu = self.img.shape[1]
|
||||
|
||||
return xl, yl, xu, yu
|
||||
|
||||
def ext(self):
|
||||
return [self.x_lower, self.x_upper, self.y_lower, self.y_upper]
|
||||
|
||||
|
||||
class Voronoi_Evaluator:
|
||||
def __init__(self, points, eval_points):
|
||||
self.eval_points = eval_points
|
||||
self.vor = Voronoi(points)
|
||||
|
||||
def __init__(self, list_points):
|
||||
points = np.concatenate(list_points, axis=0)
|
||||
self.eval_points = []
|
||||
start = 0
|
||||
for l in list_points:
|
||||
stop = l.shape[0]
|
||||
self.eval_points.append(np.arange(start, start + stop))
|
||||
start += stop
|
||||
self.vor = Voronoi(points)
|
||||
|
||||
def extract(self, img: Image_Wrapper):
|
||||
all = []
|
||||
for ev_points in self.eval_points:
|
||||
temp = []
|
||||
region_mask = self.vor.point_region[ev_points]
|
||||
for i in np.array(self.vor.regions)[region_mask]:
|
||||
if -1 in i:
|
||||
print("Contains outside points")
|
||||
continue
|
||||
if len(i) == 0:
|
||||
print("Contains outside points")
|
||||
continue
|
||||
pts = self.vor.vertices[i]
|
||||
pts = np.stack(img.val2pos(
|
||||
pts[:, 0], pts[:, 1])).astype(np.int32).T
|
||||
mask = np.zeros_like(img.img)
|
||||
cv2.fillConvexPoly(mask, pts, 1)
|
||||
mask = mask > 0 # To convert to Boolean
|
||||
temp.append(img.img[mask])
|
||||
img.img[mask] = -1
|
||||
all.append(temp)
|
||||
return all
|
||||
|
||||
def extract_paint(self, img: Image_Wrapper):
|
||||
counter = 1
|
||||
for ev_points in self.eval_points:
|
||||
region_mask = self.vor.point_region[ev_points]
|
||||
print(region_mask)
|
||||
for i in np.array(self.vor.regions)[region_mask]:
|
||||
if -1 in i:
|
||||
print("Contains outside points")
|
||||
continue
|
||||
if len(i) == 0:
|
||||
print("Contains outside points")
|
||||
continue
|
||||
pts = self.vor.vertices[i]
|
||||
pts = np.stack(img.val2pos(
|
||||
pts[:, 0], pts[:, 1])).astype(np.int32).T
|
||||
mask = np.zeros_like(img.img)
|
||||
cv2.fillConvexPoly(mask, pts, 1)
|
||||
mask = mask > 0 # To convert to Boolean
|
||||
img.img[mask] = counter
|
||||
counter += 1
|
||||
return img.img
|
||||
|
||||
|
||||
class Rect_Evaluator:
|
||||
def __init__(self, points, eval_points):
|
||||
self.eval_points = eval_points
|
||||
self.points = points
|
||||
self.length = 4
|
||||
|
||||
def __init__(self, list_points):
|
||||
self.points = np.concatenate(list_points, axis=0)
|
||||
self.eval_points = []
|
||||
start = 0
|
||||
for l in list_points:
|
||||
stop = l.shape[0]
|
||||
self.eval_points.append(np.arange(start, start + stop))
|
||||
start += stop
|
||||
print(self.points.shape)
|
||||
print(start, " from ")
|
||||
self.length = 4
|
||||
|
||||
def extract(self, img: Image_Wrapper):
|
||||
all = []
|
||||
for ev_points in self.eval_points:
|
||||
temp = []
|
||||
for x, y in self.points[ev_points]:
|
||||
x, y = img.val2pos(x, y)
|
||||
x_lower = int(x - self.length)
|
||||
y_lower = int(y - self.length)
|
||||
x_upper = int(x + self.length + 1)
|
||||
y_upper = int(y + self.length + 1)
|
||||
if img.check_bounds(x_lower, y_lower, x_upper, y_upper):
|
||||
x_lower, y_lower, x_upper, y_upper = img.clean_bounds(
|
||||
x_lower, y_lower, x_upper, y_upper)
|
||||
temp.append(img.img[x_lower:x_upper])
|
||||
all.append(temp)
|
||||
return all
|
||||
|
||||
def extract_paint(self, img: Image_Wrapper):
|
||||
val = np.nan
|
||||
for ev_points in self.eval_points:
|
||||
for x, y in self.points[ev_points]:
|
||||
x, y = img.val2pos(x, y)
|
||||
x_lower = int(x - self.length)
|
||||
y_lower = int(y - self.length)
|
||||
x_upper = int(x + self.length + 1)
|
||||
y_upper = int(y + self.length + 1)
|
||||
if img.check_bounds(x_lower, y_lower, x_upper, y_upper):
|
||||
x_lower, y_lower, x_upper, y_upper = img.clean_bounds(
|
||||
x_lower, y_lower, x_upper, y_upper)
|
||||
|
||||
img.img[y_lower:y_upper, x_lower:x_upper] = val
|
||||
return img.img
|
||||
|
||||
#
|
||||
# def main():
|
||||
# np.random.seed(10)
|
||||
# points = (np.random.rand(100, 2)-0.5) * 2
|
||||
# voro = Voronoi_Evaluator(points, [[1],[2]])
|
||||
# rect = Rect_Evaluator(points, [[1], [2]])
|
||||
# Z = np.ones((1000, 1000))
|
||||
# img = Image_Wrapper(Z, -5, .01, -5, .01)
|
||||
# voro.extract(img)
|
||||
# rect.extract(img)
|
||||
#
|
||||
# plt.scatter(points[[1], 0], points[[1], 1])
|
||||
# plt.scatter(points[[2], 0], points[[2], 1])
|
||||
# plt.imshow(img.img, extent=img.ext(), origin="lower")
|
||||
# #plt.imshow(img.img, origin="lower")
|
||||
# plt.show()
|
||||
#
|
||||
#
|
||||
# if __name__ == "__main__":
|
||||
# main()
|
@ -18,6 +18,7 @@ class Lattice:
|
||||
def reci(self):
|
||||
pass
|
||||
|
||||
|
||||
class SCC_Lattice(Lattice):
|
||||
def __init__(self, x_len, y_len):
|
||||
x = np.arange(x_len) * 5
|
||||
@ -28,10 +29,10 @@ class SCC_Lattice(Lattice):
|
||||
return self.X, self.Y
|
||||
|
||||
def reci(self):
|
||||
x = np.arange(-3,3) * 0.2
|
||||
y = np.arange(-3,3) * 0.2
|
||||
X,Y = np.meshgrid(x, y)
|
||||
return [(X,Y)]
|
||||
x = np.arange(-3, 3) * 0.2
|
||||
y = np.arange(-3, 3) * 0.2
|
||||
X, Y = np.meshgrid(x, y)
|
||||
return [(X, Y)]
|
||||
|
||||
|
||||
class VO2_Lattice(Lattice):
|
||||
@ -62,8 +63,6 @@ class VO2_Lattice(Lattice):
|
||||
|
||||
offset_a_r, offset_c_r = self._mono_2_rutile(offset_c_m, offset_a_m)
|
||||
|
||||
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
|
||||
|
||||
self.atom_x_mono = offset_a_r + X * \
|
||||
self.base_c_r + np.mod(Y, 4) * 0.5 * self.base_c_r
|
||||
self.atom_x_mono[np.mod(X, 2) == 0] -= 2 * offset_a_r
|
||||
@ -105,19 +104,28 @@ class VO2_Lattice(Lattice):
|
||||
return inplace_pos_x, inplace_pos_y
|
||||
|
||||
def reci_rutile(self):
|
||||
x = np.arange(-2, 3)
|
||||
y = np.arange(-2, 3)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
|
||||
|
||||
x = np.arange(-20, 21)
|
||||
y = np.arange(-20, 21)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
|
||||
|
||||
def reci_mono(self):
|
||||
x, y = self.reci_rutile()
|
||||
return x + 0.1083, y + 0.1719
|
||||
x, y = self.reci_rutile()
|
||||
return x + 0.1083, y + 0.1719
|
||||
|
||||
def reci_mono_2(self):
|
||||
x, y = self.reci_rutile()
|
||||
return x - 0.1083, y + 0.1719
|
||||
x, y = self.reci_rutile()
|
||||
return x - 0.1083, y + 0.1719
|
||||
|
||||
def reci(self):
|
||||
return [self.reci_rutile(), self.reci_mono(), self.reci_mono_2()]
|
||||
cutoff = 5.
|
||||
x, y = self.reci_rutile()
|
||||
mask = np.logical_and(np.abs(x) < cutoff, np.abs(y) < cutoff)
|
||||
p1 = (x[mask], y[mask])
|
||||
x, y = self.reci_mono()
|
||||
mask = np.logical_and(np.abs(x) < cutoff, np.abs(y) < cutoff)
|
||||
p2 = (x[mask], y[mask])
|
||||
x, y = self.reci_mono_2()
|
||||
mask = np.logical_and(np.abs(x) < cutoff, np.abs(y) < cutoff)
|
||||
p3 = (x[mask], y[mask])
|
||||
return [p1, p2, p3]
|
||||
|
@ -7,11 +7,13 @@ import matplotlib
|
||||
import scipy
|
||||
import scipy.signal
|
||||
import tqdm
|
||||
from extractors import Rect_Evaluator, Voronoi_Evaluator, Image_Wrapper
|
||||
|
||||
|
||||
class Plotter:
|
||||
def __init__(self, lat):
|
||||
self.lattice = lat
|
||||
self.length_2 = 0.05
|
||||
|
||||
def reduce(self, arr):
|
||||
arr = np.array(arr)
|
||||
@ -19,45 +21,8 @@ class Plotter:
|
||||
return np.mean(arr)
|
||||
# return np.sum(arr[np.argpartition(arr, -8)[-8:]])
|
||||
|
||||
def extract_rect(self, img, x, y, x_index, y_index):
|
||||
length_2 = 0.01
|
||||
|
||||
pos_x_lower = x - length_2
|
||||
pos_x_upper = x + length_2
|
||||
|
||||
pos_y_lower = y - length_2
|
||||
pos_y_upper = y + length_2
|
||||
|
||||
x_lower = np.searchsorted(x_index, pos_x_lower)
|
||||
x_upper = np.searchsorted(x_index, pos_x_upper)
|
||||
|
||||
y_lower = np.searchsorted(y_index, pos_y_lower)
|
||||
y_upper = np.searchsorted(y_index, pos_y_upper)
|
||||
|
||||
# fix different number of spins possible
|
||||
if x_upper - x_lower < 10:
|
||||
x_upper += 1
|
||||
if y_upper - y_lower < 10:
|
||||
y_upper += 1
|
||||
return img[y_lower:y_upper, x_lower:x_upper]
|
||||
|
||||
def helper(self, ax, freqx, freqy, intens):
|
||||
reci_lattice = self.lattice.reci()
|
||||
for tup, col in zip(reci_lattice, ["r", "b", "g"]):
|
||||
point_x, point_y = tup
|
||||
point_x = point_x.flatten()
|
||||
point_y = point_y.flatten()
|
||||
for px, py in zip(point_x, point_y):
|
||||
rect = self.rect_at_point(px, py, col)
|
||||
ax.add_patch(rect)
|
||||
sum = self.extract_rect(intens, px, py, freqx, freqy)
|
||||
ax.text(
|
||||
px, py, f"{self.reduce(sum):2.2}", clip_on=True
|
||||
)
|
||||
return intens
|
||||
|
||||
def rect_at_point(self, x, y, color):
|
||||
length_2 = 0.01
|
||||
length_2 = self.length_2
|
||||
rect = patches.Rectangle(
|
||||
(x - length_2, y - length_2),
|
||||
2 * length_2,
|
||||
@ -70,24 +35,21 @@ class Plotter:
|
||||
|
||||
def plot(self, freqx, freqy, intens, ax_log=None, ax_lin=None, vmax=None):
|
||||
if ax_log:
|
||||
intens = self.helper(ax_lin, freqx, freqy, intens)
|
||||
t = ax_log.imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
norm=matplotlib.colors.LogNorm(vmin=10, vmax=vmax),
|
||||
norm=matplotlib.colors.LogNorm(vmin=10),
|
||||
cmap="viridis",
|
||||
origin="lower"
|
||||
)
|
||||
plt.colorbar(t, ax=ax_log)
|
||||
self.helper(ax_log, freqx, freqy, intens)
|
||||
if ax_lin:
|
||||
intens = self.helper(ax_lin, freqx, freqy, intens)
|
||||
t = ax_lin.imshow(
|
||||
intens,
|
||||
extent=(np.min(freqx), np.max(freqx),
|
||||
np.min(freqy), np.max(freqy)),
|
||||
vmax=vmax,
|
||||
#vmax=vmax,
|
||||
cmap="viridis",
|
||||
origin="lower"
|
||||
)
|
||||
@ -101,11 +63,11 @@ def rotate(x, y, angle):
|
||||
|
||||
def test_square():
|
||||
LEN = 40
|
||||
#lat = SCC_Lattice(LEN, LEN)
|
||||
# lat = SCC_Lattice(LEN, LEN)
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
|
||||
#pos_x, pos_y = rotate(pos_x, pos_y, 30)
|
||||
# pos_x, pos_y = rotate(pos_x, pos_y, 30)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
fig, axs = plt.subplots(2, 2)
|
||||
si.pad_it_square(10)
|
||||
@ -117,7 +79,6 @@ def test_square():
|
||||
plt.pause(0.1)
|
||||
fx, fy, intens = si.fft()
|
||||
plot.plot(fx, fy, intens, axs[1, 0], axs[1, 1])
|
||||
print("Done")
|
||||
plt.savefig("test.png")
|
||||
plt.show()
|
||||
|
||||
@ -126,6 +87,10 @@ def test_mixed():
|
||||
LEN = 40
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
all_rutile = np.stack(lat.reci()[0]).T
|
||||
all_mono = np.stack(lat.reci()[1]).T
|
||||
all_mono2 = np.stack(lat.reci()[2]).T
|
||||
rect = Voronoi_Evaluator([all_rutile, all_mono, all_mono2])
|
||||
|
||||
pos_x, pos_y = lat.get_from_mask(np.zeros((40, 40)))
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
@ -146,6 +111,13 @@ def test_mixed():
|
||||
si.pad_it_square(10)
|
||||
fx, fy, intens_mixed = si.fft()
|
||||
|
||||
intens_rutile = rect.extract_paint(
|
||||
Image_Wrapper(intens_rutile, fx=fx, fy=fy))
|
||||
intens_mono = rect.extract_paint(
|
||||
Image_Wrapper(intens_mono, fx=fx, fy=fy))
|
||||
intens_mixed = rect.extract_paint(
|
||||
Image_Wrapper(intens_mixed, fx=fx, fy=fy))
|
||||
|
||||
fig, axs = plt.subplots(2, 3)
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_rutile,
|
||||
ax_log=axs[0, 0], ax_lin=axs[1, 0], vmax=10e7)
|
||||
@ -154,8 +126,6 @@ def test_mixed():
|
||||
plot.plot(freqx=fx, freqy=fy, intens=intens_mixed,
|
||||
ax_log=axs[0, 1], ax_lin=axs[1, 1], vmax=10e7)
|
||||
|
||||
print(np.sum(intens_mono), np.sum(intens_rutile), np.sum(intens_mixed))
|
||||
|
||||
for ax in axs.flatten():
|
||||
ax.set_xlim(-1, 1)
|
||||
ax.set_ylim(-1, 1)
|
||||
@ -163,7 +133,8 @@ def test_mixed():
|
||||
plt.show()
|
||||
|
||||
|
||||
def random():
|
||||
def random(seed):
|
||||
np.random.seed(seed)
|
||||
LEN = 40
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
@ -178,291 +149,97 @@ def random():
|
||||
for i in tqdm.tqdm(ind):
|
||||
maske[np.unravel_index(i, (LEN, LEN))] = True
|
||||
counter += 1
|
||||
if np.mod(counter, 20) != 0:
|
||||
if np.mod(counter, 100) != 0:
|
||||
continue
|
||||
|
||||
pos_x, pos_y = lat.get_from_mask(maske)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
si.pad_it_square(10)
|
||||
si.gaussian(LEN)
|
||||
fx, fy, intens = si.fft()
|
||||
|
||||
for tup, lis in zip(reci_lattice, out):
|
||||
point_x, point_y = tup
|
||||
point_x = point_x.flatten()
|
||||
point_y = point_y.flatten()
|
||||
sum = 0.
|
||||
peaks = []
|
||||
for px, py in zip(point_x, point_y):
|
||||
sum += np.sum(plot.extract_rect(intens, px, py, fx, fy))
|
||||
peaks.append(np.sum(plot.extract_rect(intens, px, py, fx, fy)))
|
||||
lis.append(peaks)
|
||||
|
||||
lis.append(sum)
|
||||
percentage.append(np.sum(maske))
|
||||
|
||||
percentage = np.array(percentage)
|
||||
percentage /= np.max(percentage)
|
||||
|
||||
np.savez(f"random_{seed}.npz", percentage=percentage, out=out)
|
||||
|
||||
|
||||
def sample_index(p):
|
||||
i = np.random.choice(np.arange(p.size), p=p.ravel())
|
||||
return np.unravel_index(i, p.shape)
|
||||
|
||||
|
||||
def ising(seed):
|
||||
np.random.seed(seed)
|
||||
LEN = 80
|
||||
temp = 0.1
|
||||
maske = np.zeros((LEN, LEN), dtype=bool)
|
||||
|
||||
lat = VO2_Lattice(LEN, LEN)
|
||||
plot = Plotter(lat)
|
||||
|
||||
reci_lattice = lat.reci()
|
||||
out = [[] for x in range(len(reci_lattice))]
|
||||
percentage = []
|
||||
counter = 0
|
||||
for i in tqdm.tqdm(range(LEN*LEN)):
|
||||
probability = np.roll(maske, 1, axis=0).astype(float)
|
||||
probability += np.roll(maske, -1, axis=0).astype(float)
|
||||
probability += np.roll(maske, 1, axis=1).astype(float)
|
||||
probability += np.roll(maske, -1, axis=1).astype(float)
|
||||
|
||||
probability = np.exp(probability/temp)
|
||||
probability[maske] = 0
|
||||
probability /= np.sum(probability)
|
||||
maske[sample_index(probability)] = True
|
||||
|
||||
counter += 1
|
||||
if np.mod(counter, 100) != 0:
|
||||
continue
|
||||
pos_x, pos_y = lat.get_from_mask(maske)
|
||||
si = SpinImage(pos_x, pos_y)
|
||||
si.pad_it_square(10)
|
||||
# si.gaussian(LEN)
|
||||
fx, fy, intens = si.fft()
|
||||
|
||||
for tup, lis in zip(reci_lattice, out):
|
||||
point_x, point_y = tup
|
||||
point_x = point_x.flatten()
|
||||
point_y = point_y.flatten()
|
||||
peaks = []
|
||||
for px, py in zip(point_x, point_y):
|
||||
peaks.append(np.sum(plot.extract_rect(intens, px, py, fx, fy)))
|
||||
|
||||
lis.append(peaks)
|
||||
percentage.append(np.mean(maske))
|
||||
percentage = np.array(percentage)
|
||||
percentage /= np.max(percentage)
|
||||
|
||||
for o in out:
|
||||
plt.scatter(percentage, o/o[0])
|
||||
plt.plot([0,1], [o[0], o[-1]])
|
||||
plt.show()
|
||||
np.savez(f"ising_{temp}_{seed}.npz", percentage=percentage, out=out)
|
||||
# for o in out:
|
||||
# plt.scatter(percentage, o/o[0])
|
||||
# plt.plot([0, 1], [1, o[-1]/o[0]])
|
||||
# plt.pause(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_square()
|
||||
# test_mixed()
|
||||
random()
|
||||
# def test_lattice():
|
||||
# lat = VO2_Lattice(10, 10)
|
||||
# maske = np.zeros((10, 10), dtype=bool)
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
#
|
||||
# plt.scatter(x, y)
|
||||
# maske = np.invert(maske)
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# plt.scatter(x, y)
|
||||
#
|
||||
# maske[:3, :5] = False
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# plt.scatter(x, y)
|
||||
# plt.show()
|
||||
#
|
||||
#
|
||||
# self.resolution = 0.1
|
||||
# CMAP = "Greys"
|
||||
#
|
||||
#
|
||||
# def test_img():
|
||||
# lat = VO2_Lattice(10, 10)
|
||||
# maske = np.ones((10, 10), dtype=bool)
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# img = image_from_pos(x, y)
|
||||
# plt.imshow(img.T, origin="lower", extent=(0, np.max(x), 0, np.max(y)))
|
||||
# plt.scatter(x, y)
|
||||
# plt.show()
|
||||
#
|
||||
#
|
||||
# def gaussian(img):
|
||||
# x = np.arange(-self.resolution * img.shape[0]/2,
|
||||
# self.resolution * img.shape[0]/2, self.resolution)
|
||||
# y = np.arange(-self.resolution * img.shape[1]/2,
|
||||
# self.resolution * img.shape[1]/2, self.resolution)
|
||||
# X, Y = np.meshgrid(x, y)
|
||||
# sigma = self.resolution * img.shape[0] / 10
|
||||
# print("Sigma: ", sigma)
|
||||
# z = (
|
||||
# 1 / (2 * np.pi * sigma * sigma)
|
||||
# * np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
|
||||
# )
|
||||
# return np.multiply(img, z.T)
|
||||
#
|
||||
#
|
||||
# def rect_at_point(x, y, color):
|
||||
# length_2 = 0.08
|
||||
# rect = patches.Rectangle(
|
||||
# (x - length_2, y - length_2),
|
||||
# 2 * length_2,
|
||||
# 2 * length_2,
|
||||
# linewidth=1,
|
||||
# edgecolor=color,
|
||||
# facecolor="none",
|
||||
# )
|
||||
# return rect
|
||||
#
|
||||
#
|
||||
# def reci_rutile():
|
||||
# x = np.arange(-2, 3)
|
||||
# y = np.arange(-2, 3)
|
||||
# X, Y = np.meshgrid(x, y)
|
||||
# return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
|
||||
#
|
||||
#
|
||||
# def reci_mono():
|
||||
# x, y = reci_rutile()
|
||||
# return x + 0.1083, y + 0.1719
|
||||
#
|
||||
#
|
||||
# def draw_big_val_rect(img, x, y, x_index, y_index):
|
||||
# length_2 = 0.08
|
||||
# pos_x_lower = x - length_2
|
||||
# pos_x_upper = x + length_2
|
||||
#
|
||||
# pos_y_lower = y - length_2
|
||||
# pos_y_upper = y + length_2
|
||||
# x_lower = np.searchsorted(x_index, pos_x_lower)
|
||||
# x_upper = np.searchsorted(x_index, pos_x_upper)
|
||||
# y_lower = np.searchsorted(y_index, pos_y_lower)
|
||||
# y_upper = np.searchsorted(y_index, pos_y_upper)
|
||||
#
|
||||
# img[y_lower:y_upper, x_lower:x_upper] = 1e4
|
||||
# return img
|
||||
#
|
||||
#
|
||||
# def extract_rect(img, x, y, x_index, y_index):
|
||||
# length_2 = 0.08
|
||||
#
|
||||
# pos_x_lower = x - length_2
|
||||
# pos_x_upper = x + length_2
|
||||
#
|
||||
# pos_y_lower = y - length_2
|
||||
# pos_y_upper = y + length_2
|
||||
#
|
||||
# x_lower = np.searchsorted(x_index, pos_x_lower)
|
||||
# x_upper = np.searchsorted(x_index, pos_x_upper)
|
||||
#
|
||||
# y_lower = np.searchsorted(y_index, pos_y_lower)
|
||||
# y_upper = np.searchsorted(y_index, pos_y_upper)
|
||||
#
|
||||
# # fix different number of spins possible
|
||||
# if x_upper - x_lower < 10:
|
||||
# x_upper += 1
|
||||
# if y_upper - y_lower < 10:
|
||||
# y_upper += 1
|
||||
#
|
||||
# return img[y_lower:y_upper, x_lower:x_upper]
|
||||
#
|
||||
#
|
||||
# def extract_peaks(freqx, freqy, intens):
|
||||
# rutile = []
|
||||
# point_x, point_y = reci_rutile()
|
||||
# for px, py in zip(point_x, point_y):
|
||||
# rutile.append(reduce(extract_rect(intens, px, py, freqx, freqy)))
|
||||
#
|
||||
# mono = []
|
||||
# point_x, point_y = reci_mono()
|
||||
# for px, py in zip(point_x, point_y):
|
||||
# mono.append(reduce(extract_rect(intens, px, py, freqx, freqy)))
|
||||
# return rutile, mono
|
||||
#
|
||||
#
|
||||
# def plot(ax, freqx, freqy, intens):
|
||||
# point_x, point_y = reci_rutile()
|
||||
# for px, py in zip(point_x, point_y):
|
||||
# rect = rect_at_point(px, py, "r")
|
||||
# ax.add_patch(rect)
|
||||
# ax.text(
|
||||
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
|
||||
# )
|
||||
#
|
||||
# point_x, point_y = reci_mono()
|
||||
# for px, py in zip(point_x, point_y):
|
||||
# rect = rect_at_point(px, py, "b")
|
||||
# ax.add_patch(rect)
|
||||
# ax.text(
|
||||
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
|
||||
# )
|
||||
# ax.imshow(
|
||||
# intens,
|
||||
# extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy)),
|
||||
# norm=matplotlib.colors.LogNorm(),
|
||||
# cmap="Greys"
|
||||
# )
|
||||
#
|
||||
#
|
||||
# def test_all():
|
||||
# LEN = 100
|
||||
# SIZE = 60 * LEN + 1
|
||||
# quad = np.ones((3, 3))
|
||||
#
|
||||
# fig, ax = plt.subplots(1, 3)
|
||||
#
|
||||
# lat = VO2_Lattice(LEN, LEN)
|
||||
# maske = np.ones((LEN, LEN), dtype=bool)
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# img = image_from_pos(x, y)
|
||||
# img = padding(img, SIZE, SIZE)
|
||||
# #img = scipy.signal.convolve2d(img, quad)
|
||||
# img = gaussian(img)
|
||||
# freqx, freqy, intens_rutile = fft(img)
|
||||
#
|
||||
# img = scipy.signal.convolve2d(img, quad)
|
||||
# ax[0].imshow(img)
|
||||
#
|
||||
# maske = np.zeros((LEN, LEN), dtype=bool)
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# img = image_from_pos(x, y)
|
||||
# img = padding(img, SIZE, SIZE)
|
||||
# img = gaussian(img)
|
||||
# freqx, freqy, intens_mono = fft(img)
|
||||
#
|
||||
# img = scipy.signal.convolve2d(img, quad)
|
||||
# ax[2].imshow(img)
|
||||
#
|
||||
# maske = np.zeros((LEN, LEN), dtype=bool)
|
||||
# ind = np.arange(LEN*LEN)
|
||||
# np.random.shuffle(ind)
|
||||
# ind = np.unravel_index(ind[:int(LEN*LEN/2)], (LEN, LEN))
|
||||
# maske[ind] = True
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# img = image_from_pos(x, y)
|
||||
# img = padding(img, SIZE, SIZE)
|
||||
# img = gaussian(img)
|
||||
# freqx, freqy, intens_mono = fft(img)
|
||||
#
|
||||
# img = scipy.signal.convolve2d(img, quad)
|
||||
# ax[1].imshow(img)
|
||||
#
|
||||
# print(np.mean(maske))
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# img = image_from_pos(x, y)
|
||||
# img = padding(img, SIZE, SIZE)
|
||||
# img = gaussian(img)
|
||||
# freqx, freqy, intens_50 = fft(img)
|
||||
#
|
||||
# fig, axs = plt.subplots(1, 3)
|
||||
# plot(axs[0], freqx=freqx, freqy=freqy, intens=intens_rutile)
|
||||
# plot(axs[2], freqx=freqx, freqy=freqy, intens=intens_mono)
|
||||
# plot(axs[1], freqx=freqx, freqy=freqy, intens=intens_50)
|
||||
# axs[0].set_title("Rutile")
|
||||
# axs[2].set_title("Mono")
|
||||
# axs[1].set_title("50/50")
|
||||
#
|
||||
# for ax in axs:
|
||||
# ax.set_xlim(-1.0, 1.0)
|
||||
# ax.set_ylim(-1.0, 1.0)
|
||||
#
|
||||
#
|
||||
# def eval(maske, lat, LEN):
|
||||
# x, y = lat.get_from_mask(maske)
|
||||
# SIZE = 60 * LEN + 1
|
||||
# img = image_from_pos(x, y)
|
||||
# img = padding(img, SIZE, SIZE)
|
||||
# img = gaussian(img)
|
||||
# freqx, freqy, intens = fft(img)
|
||||
# return extract_peaks(freqx, freqy, intens)
|
||||
#
|
||||
#
|
||||
# def reduce(arr):
|
||||
# arr = np.array(arr)
|
||||
# arr = arr.flatten()
|
||||
# return np.sum(arr[np.argpartition(arr, -8)[-8:]])
|
||||
#
|
||||
#
|
||||
# def main():
|
||||
# LEN = 80
|
||||
# lat = VO2_Lattice(LEN, LEN)
|
||||
# maske = np.zeros((LEN, LEN), dtype=bool)
|
||||
# ind = np.arange(LEN*LEN)
|
||||
# np.random.shuffle(ind)
|
||||
# percentage = []
|
||||
# rutile = []
|
||||
# monoclinic = []
|
||||
# counter = 0
|
||||
# for i in tqdm.tqdm(ind):
|
||||
# i_unravel = np.unravel_index(i, (LEN, LEN))
|
||||
# maske[i_unravel] = True
|
||||
# if np.mod(counter, 300) == 0:
|
||||
# rut, mono = eval(maske, lat, LEN)
|
||||
# percentage.append(np.mean(maske))
|
||||
# rutile.append(reduce(rut))
|
||||
# monoclinic.append(reduce(mono))
|
||||
# counter += 1
|
||||
#
|
||||
# print(len(percentage), len(mono), len(rutile))
|
||||
# print(mono)
|
||||
# plt.figure()
|
||||
# plt.scatter(percentage, np.array(monoclinic)/monoclinic[0], label="mono")
|
||||
# plt.scatter(percentage, np.array(rutile)/rutile[0], label="rut")
|
||||
# plt.legend()
|
||||
#
|
||||
#
|
||||
# if __name__ == "__main__":
|
||||
# test_all()
|
||||
# # main()
|
||||
# plt.show()
|
||||
test_mixed()
|
||||
plt.show()
|
||||
# random()
|
||||
np.random.seed(1234)
|
||||
for i in np.random.randint(0, 10000, 2):
|
||||
random(i)
|
||||
ising(i)
|
||||
|
||||
plt.show()
|
||||
|
5
2d_fourie/plot.py
Normal file
5
2d_fourie/plot.py
Normal file
@ -0,0 +1,5 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
@ -1,6 +1,6 @@
|
||||
import numpy as np
|
||||
import scipy.fftpack as sfft
|
||||
|
||||
import scipy
|
||||
|
||||
class SpinImage:
|
||||
resolution = 0.1
|
||||
@ -33,12 +33,10 @@ class SpinImage:
|
||||
def pad_it_square(self, additional_pad=0):
|
||||
h = self.img.shape[0]
|
||||
w = self.img.shape[1]
|
||||
print(h, w)
|
||||
xx = np.maximum(h, w) + 2 * additional_pad
|
||||
yy = xx
|
||||
self.length_x = xx * self.resolution
|
||||
self.length_y = yy * self.resolution
|
||||
print("Pad to: ", xx, yy)
|
||||
|
||||
a = (xx - h) // 2
|
||||
aa = xx - a - h
|
||||
@ -49,6 +47,18 @@ class SpinImage:
|
||||
self.img = np.pad(self.img, pad_width=(
|
||||
(a, aa), (b, bb)), mode="constant")
|
||||
|
||||
def percentage_gaussian(self, mask, sigma):
|
||||
x = np.linspace(-self.length_x / 2,
|
||||
self.length_x / 2, mask.shape[0])
|
||||
y = np.linspace(-self.length_y / 2,
|
||||
self.length_y / 2, mask.shape[1])
|
||||
X, Y = np.meshgrid(x, y)
|
||||
z = (
|
||||
1 / (2 * np.pi * sigma * sigma)
|
||||
* np.exp(-(X ** 2 / (2 * sigma ** 2) + Y ** 2 / (2 * sigma ** 2)))
|
||||
)
|
||||
return np.multiply(mask, z.T)
|
||||
|
||||
def gaussian(self, sigma):
|
||||
x = np.arange(-self.length_x / 2,
|
||||
self.length_x / 2, self.resolution)
|
||||
|
46
2d_fourie/test_voronoi.py
Normal file
46
2d_fourie/test_voronoi.py
Normal file
@ -0,0 +1,46 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from scipy.spatial import Voronoi, voronoi_plot_2d
|
||||
import cv2
|
||||
|
||||
|
||||
|
||||
class Voronoi_Evaulator:
|
||||
def __init__(self, points, eval_points):
|
||||
self.eval_points = eval_points
|
||||
self.vor = Voronoi(points)
|
||||
|
||||
def extract(self, Z):
|
||||
for debug_num, ev_points in zip([-10, -5], self.eval_points):
|
||||
region_mask = self.vor.point_region[ev_points]
|
||||
print(region_mask)
|
||||
for i in np.array(self.vor.regions)[region_mask]:
|
||||
if -1 in i:
|
||||
print("Containse outside points")
|
||||
continue
|
||||
if len(i) == 0:
|
||||
print("Containse outside points")
|
||||
continue
|
||||
print(i)
|
||||
pts = self.vor.vertices[i]
|
||||
pts = (pts * 100).astype(np.int32)
|
||||
print(pts)
|
||||
mask = np.zeros((Z.shape[0], Z.shape[1]))
|
||||
cv2.fillConvexPoly(mask, pts, 1)
|
||||
mask = mask > 0 # To convert to Boolean
|
||||
Z[mask] = debug_num
|
||||
return Z
|
||||
|
||||
if __name__ == "__main__":
|
||||
np.random.seed(20)
|
||||
points = (np.random.rand(100, 2)-0.1) * 2
|
||||
voro = Voronoi_Evaulator(points, [[1, 4, 5], [2, 3, 6]])
|
||||
|
||||
x = np.linspace(0, 1, 100)
|
||||
y = np.linspace(0, 1, 200)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z = X*2 + Y
|
||||
|
||||
Z = voro.extract(Z)
|
||||
plt.imshow(Z)
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user