Stuff done

This commit is contained in:
Jacob Holder 2023-04-14 19:50:57 +02:00
parent c74df3f3d8
commit 5ed55ed759
Signed by: jacob
GPG Key ID: 2194FC747048A7FD
2 changed files with 99 additions and 144 deletions

View File

@ -121,45 +121,32 @@ def helper(intens, fx, fy, voro, rect):
def test_mixed(): def test_mixed():
shift_x = -(5 + 3*28) fig, axs = plt.subplots(3, 3)
shift_y = -43 LEN = 80
LEN = 40
lat = VO2_Lattice(LEN, LEN) lat = VO2_Lattice(LEN, LEN)
plot = Plotter(lat) plot = Plotter(lat)
[(x, y), (x1, y1)] = lat.get_both()
pos_x, pos_y = lat.get_from_mask(np.zeros((LEN, LEN))) si = SpinImage_Two_Phase(x, y, x1, y1)
si_mono = SpinImage(pos_x, pos_y) mask_misk = np.ones((LEN, LEN), dtype=bool)
si_mono.pad_it(int((LEN * 5.712) / si_mono.resolution)+shift_x,
int((LEN * 4.554) / si_mono.resolution)+shift_y)
fx, fy, intens_mono = si_mono.fft()
pos_x, pos_y = lat.get_from_mask(np.ones((LEN, LEN)))
si_rutile = SpinImage(pos_x, pos_y)
print(int((LEN * 5.712) / si_rutile.resolution)+shift_x,
int((LEN * 4.554) / si_rutile.resolution)+shift_y,
si_rutile.img.shape)
si_rutile.pad_it(int((LEN * 5.712) / si_rutile.resolution)+shift_x,
int((LEN * 4.554) / si_rutile.resolution)+shift_y)
fx, fy, intens_rutile = si_rutile.fft()
mask_misk = np.ones((LEN, LEN))
ind = np.arange(mask_misk.size) ind = np.arange(mask_misk.size)
np.random.shuffle(ind) np.random.shuffle(ind)
mask_misk[np.unravel_index(ind[:800], (LEN, LEN))] = False mask_misk[np.unravel_index(ind[:800], (LEN, LEN))] = False
pos_x, pos_y = lat.get_from_mask(mask_misk)
si_mixed = SpinImage(pos_x, pos_y)
si_mixed.pad_it(int((LEN * 5.712) / si_mixed.resolution)+shift_x,
int((LEN * 4.554) / si_mixed.resolution)+shift_y)
fx, fy, intens_mixed = si_mixed.fft()
plot_periodic(si_rutile.img) si.apply_mask(np.zeros((LEN, LEN), dtype=bool))
plot_periodic(si_mono.img) si.gaussian(20)
plot_periodic(si_mixed.img) fx, fy, intens_mono = si.fft()
si.plot(axs[0, 2])
si.apply_mask(np.ones((LEN, LEN)))
si.gaussian(20)
fx, fy, intens_rutile = si.fft()
si.plot(axs[0, 0])
si.apply_mask(mask_misk)
si.gaussian(20)
fx, fy, intens_mixed = si.fft()
si.plot(axs[0, 1])
fig, axs = plt.subplots(3, 3)
si_rutile.plot(axs[0, 0])
si_mono.plot(axs[0, 2])
si_mixed.plot(axs[0, 1])
plot.plot(freqx=fx, freqy=fy, intens=intens_rutile, plot.plot(freqx=fx, freqy=fy, intens=intens_rutile,
ax_log=axs[1, 0], ax_lin=axs[2, 0], vmax=10e7) ax_log=axs[1, 0], ax_lin=axs[2, 0], vmax=10e7)
plot.plot(freqx=fx, freqy=fy, intens=intens_mono, plot.plot(freqx=fx, freqy=fy, intens=intens_mono,
@ -167,30 +154,13 @@ def test_mixed():
plot.plot(freqx=fx, freqy=fy, intens=intens_mixed, plot.plot(freqx=fx, freqy=fy, intens=intens_mixed,
ax_log=axs[1, 1], ax_lin=axs[2, 1], vmax=10e7) ax_log=axs[1, 1], ax_lin=axs[2, 1], vmax=10e7)
index = np.abs(fx).argmin() # Plotting cuts
print(index, "/", fx.shape)
fig, axs = plt.subplots(1, 3)
axs[0].plot(intens_rutile[index, :])
axs[0].plot(intens_rutile[index-1, :])
axs[0].plot(intens_rutile[index+1, :])
axs[1].plot(intens_mixed[index, :])
axs[2].plot(intens_mono[index, :])
for a in axs:
a.set_yscale("log")
index = np.abs(fy).argmin()
print(index, "/", fy.shape)
fig, axs = plt.subplots(1, 3)
axs[0].plot(intens_rutile[:, index])
axs[1].plot(intens_mixed[:, index])
axs[2].plot(intens_mono[:, index])
for a in axs:
a.set_yscale("log")
def random(seed): def random(seed):
np.random.seed(seed) np.random.seed(seed)
LEN = 40 LEN = 80
lat = VO2_Lattice(LEN, LEN) lat = VO2_Lattice(LEN, LEN)
maske = np.zeros((LEN, LEN)) maske = np.zeros((LEN, LEN))
ind = np.arange(LEN * LEN) ind = np.arange(LEN * LEN)
@ -319,7 +289,7 @@ def test_me():
pos_x, pos_y = lat.get_from_mask(maske) pos_x, pos_y = lat.get_from_mask(maske)
si = SpinImage(pos_x, pos_y) si = SpinImage(pos_x, pos_y)
fig, axs = plt.subplots(1, 3) fig, axs = plt.subplots(1, 4)
kernel = np.ones((20, 20)) kernel = np.ones((20, 20))
array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same') array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same')
axs[0].imshow(array) axs[0].imshow(array)
@ -328,21 +298,19 @@ def test_me():
si = SpinImage_Two_Phase(x, y, x1, y1) si = SpinImage_Two_Phase(x, y, x1, y1)
si.apply_mask(maske) si.apply_mask(maske)
array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same')
# axs[1].imshow(array)
axs[1].imshow(si.img) axs[1].imshow(si.img)
tmp = si.img
np.invert(maske) maske = np.invert(maske)
si.apply_mask(maske) si.apply_mask(maske)
array = signal.convolve2d(si.img, kernel, boundary='symm', mode='same')
# axs[1].imshow(array)
axs[2].imshow(si.img) axs[2].imshow(si.img)
axs[3].imshow(si.img+tmp)
if __name__ == "__main__": if __name__ == "__main__":
# test_me() # test_me()
test_square() # test_square()
# test_mixed() test_mixed()
plt.show() plt.show()
# random() # random()
# np.random.seed(1234) # np.random.seed(1234)

View File

@ -10,6 +10,31 @@ class SpinImage_Two_Phase:
resolution = 0.05 resolution = 0.05
offset = 40 offset = 40
def make_list(self, x_pos, y_pos, x_inds, y_inds):
sigma = .1
x_ind = np.arange(0, self.length_x, self.resolution)
y_ind = np.arange(0, self.length_y, self.resolution)
X, Y = np.meshgrid(x_ind, y_ind, indexing="ij")
out_list = []
for x, y, x_ind, y_ind in zip(
x_pos.flatten(),
y_pos.flatten(),
x_inds.flatten(),
y_inds.flatten(),
):
xl, yl, xu, yu = self.clean_bounds(
x_ind - self.offset,
y_ind - self.offset,
x_ind + self.offset,
y_ind + self.offset,
X.shape,
)
out_list.append(np.exp(-0.5 * ((X[xl:xu, yl:yu] - x) ** 2 +
(Y[xl:xu, yl:yu] - y) ** 2) / sigma**2))
#out_list.append(np.ones_like(X[xl:xu, yl:yu]))
out_list = np.array(out_list)
return out_list
@timeit @timeit
def __init__(self, x_pos_low, y_pos_low, x_pos_high, y_pos_high): def __init__(self, x_pos_low, y_pos_low, x_pos_high, y_pos_high):
assert x_pos_low.shape == y_pos_low.shape assert x_pos_low.shape == y_pos_low.shape
@ -18,60 +43,28 @@ class SpinImage_Two_Phase:
offset_shift = self.offset * self.resolution offset_shift = self.offset * self.resolution
x_pos_low = x_pos_low - np.min(x_pos_low) + offset_shift zero_shift_x = np.minimum(np.min(x_pos_low), np.min(x_pos_high))
y_pos_low = y_pos_low - np.min(y_pos_low) + offset_shift zero_shift_y = np.minimum(np.min(y_pos_low), np.min(y_pos_high))
x_pos_high = x_pos_high - np.min(x_pos_high) + offset_shift
y_pos_high = y_pos_high - np.min(y_pos_high) + offset_shift x_pos_low = x_pos_low - zero_shift_x + offset_shift
y_pos_low = y_pos_low - zero_shift_y + offset_shift
x_pos_high = x_pos_high - zero_shift_x + offset_shift
y_pos_high = y_pos_high - zero_shift_y + offset_shift
max_len_x = np.maximum(np.max(x_pos_low), np.max(x_pos_high)) max_len_x = np.maximum(np.max(x_pos_low), np.max(x_pos_high))
max_len_y = np.maximum(np.max(y_pos_low), np.max(y_pos_high)) max_len_y = np.maximum(np.max(y_pos_low), np.max(y_pos_high))
self.length_x = max_len_x + (self.offset + 1) * self.resolution self.length_x = max_len_x + (self.offset + 1) * self.resolution
self.length_y = max_len_y + (self.offset + 1) * self.resolution self.length_y = max_len_y + (self.offset + 1) * self.resolution
self.x_ind = np.arange(0, self.length_x, self.resolution) # angstrom self.x_index_low, self.y_index_low = self._stuff(x_pos_low, y_pos_low)
self.y_ind = np.arange(0, self.length_y, self.resolution) # angstrom self.x_index_high, self.y_index_high = self._stuff(
self.x_low, self.y_low = self._stuff(x_pos_low, y_pos_low) x_pos_high, y_pos_high)
self.x_high, self.y_high = self._stuff(x_pos_high, y_pos_high)
X, Y = np.meshgrid(self.x_ind, self.y_ind, indexing="ij") self.buffer_low = self.make_list(
print(X.shape, self.x_low.flatten().max(), self.y_low.flatten().max()) x_pos_low, y_pos_low, self.x_index_low, self.y_index_low)
sigma = .1 self.buffer_high = self.make_list(
self.low_list = [] x_pos_high, y_pos_high, self.x_index_high, self.y_index_high)
for x, y, x_ind, y_ind in zip(
x_pos_low.flatten(),
y_pos_low.flatten(),
self.x_low.flatten(),
self.y_low.flatten(),
):
xl, yl, xu, yu = self.clean_bounds(
x_ind - self.offset,
y_ind - self.offset,
x_ind + self.offset,
y_ind + self.offset,
X.shape,
)
self.low_list.append(np.exp(-0.5 * ((X[xl:xu, yl:yu] - x) ** 2 +
(Y[xl:xu, yl:yu] - y) ** 2) / sigma**2))
self.low_list = np.array(
self.low_list, dtype=object)
#print("BEFOR:", self.low_list.shape)
#self.low_list = self.low_list.reshape((*self.x_high.shape,80,80))
#print("HIER:", self.low_list.shape)
self.high_list = []
for x, y, x_ind, y_ind in zip(
x_pos_high.flatten(),
y_pos_high.flatten(),
self.x_high.flatten(),
self.y_high.flatten(),
):
xl, yl, xu, yu = self.clean_bounds(
x_ind - self.offset,
y_ind - self.offset,
x_ind + self.offset,
y_ind + self.offset,
X.shape,
)
self.high_list.append(np.exp(-0.5 * ((X[xl:xu, yl:yu] - x) ** 2 +
(Y[xl:xu, yl:yu] - y) ** 2) / sigma**2))
self.high_list = np.array(self.high_list, dtype=object)
def clean_bounds(self, xl, yl, xu, yu, shape): def clean_bounds(self, xl, yl, xu, yu, shape):
if xl < 0: if xl < 0:
@ -87,24 +80,17 @@ class SpinImage_Two_Phase:
return xl, yl, xu, yu return xl, yl, xu, yu
def _stuff(self, pos_x, pos_y): def _stuff(self, pos_x, pos_y):
xind = np.searchsorted(self.x_ind, pos_x).astype(int) x_ind = np.arange(0, self.length_x, self.resolution)
yind = np.searchsorted(self.y_ind, pos_y).astype(int) y_ind = np.arange(0, self.length_y, self.resolution)
xind = np.searchsorted(x_ind, pos_x).astype(int)
yind = np.searchsorted(y_ind, pos_y).astype(int)
return xind, yind return xind, yind
@timeit def _apply_mask(self, x, y, buffer, mask):
def apply_mask(self, maske):
mask = np.empty_like(self.x_high, dtype=bool)
mask[0::2, 0::2] = maske
mask[1::2, 0::2] = maske
mask[0::2, 1::2] = maske
mask[1::2, 1::2] = maske
mask = mask.flatten()
self.img = np.zeros((self.x_ind.size, self.y_ind.size))
print(self.img.shape)
for x, y, dat in zip( for x, y, dat in zip(
self.x_high.flatten()[mask], x.flatten()[mask],
self.y_high.flatten()[mask], y.flatten()[mask],
self.high_list[mask], buffer[mask],
): ):
xl, yl, xu, yu = self.clean_bounds( xl, yl, xu, yu = self.clean_bounds(
x - self.offset, x - self.offset,
@ -114,25 +100,24 @@ class SpinImage_Two_Phase:
self.img.shape, self.img.shape,
) )
self.img[x - self.offset: x + self.offset, self.img[x - self.offset: x + self.offset,
y - self.offset: y + self.offset] = dat y - self.offset: y + self.offset] += dat
self.img[x, y] += 1
@timeit
def apply_mask(self, maske):
mask = np.empty_like(self.x_index_high, dtype=bool)
print(maske)
mask[0::2, 0::2] = maske
mask[1::2, 0::2] = maske
mask[0::2, 1::2] = maske
mask[1::2, 1::2] = maske
mask = mask.flatten()
self.img = np.zeros(
(int(self.length_x/self.resolution), int(self.length_y/self.resolution)))
self._apply_mask(self.x_index_low, self.y_index_low,
self.buffer_low, mask)
mask = np.invert(mask) mask = np.invert(mask)
for x, y, dat in zip( self._apply_mask(self.x_index_high, self.y_index_high,
self.x_high.flatten()[mask], self.buffer_high, mask)
self.y_high.flatten()[mask],
self.high_list[mask],
):
xl, yl, xu, yu = self.clean_bounds(
x - self.offset,
y - self.offset,
x + self.offset,
y + self.offset,
self.img.shape,
)
if self.img[xl:xu, yl:yu].shape == dat.shape:
self.img[xl:xu, yl:yu] = dat
else:
self.img[x, y] += 1
@timeit @timeit
def fft(self): def fft(self):
@ -173,9 +158,11 @@ class SpinImage_Two_Phase:
(a, aa), (b, bb)), mode="constant") (a, aa), (b, bb)), mode="constant")
def gaussian(self, sigma): def gaussian(self, sigma):
x = np.arange(-self.length_x / 2, self.length_x / 2, self.resolution) x = np.linspace(0, self.length_x, self.img.shape[0])
y = np.arange(-self.length_y / 2, self.length_y / 2, self.resolution) y = np.linspace(0, self.length_y, self.img.shape[1])
X, Y = np.meshgrid(x, y) X, Y = np.meshgrid(x, y)
X = X - (self.length_x / 2.)
Y = Y - (self.length_y / 2.)
z = 1 / (2 * np.pi * sigma * sigma) * \ z = 1 / (2 * np.pi * sigma * sigma) * \
np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2))) np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
self.img = np.multiply(self.img, z.T) self.img = np.multiply(self.img, z.T)