This commit is contained in:
Jacob Holder 2023-02-16 08:57:13 +01:00
parent 3ca11080d7
commit a6e526264e
Signed by: jacob
GPG Key ID: 2194FC747048A7FD
3 changed files with 491 additions and 316 deletions

97
2d_fourie/lattices.py Normal file
View File

@ -0,0 +1,97 @@
import numpy as np
def deg_2_rad(winkel):
return winkel / 180.0 * np.pi
# all units in angstrom
class Lattice:
def __init__(self, x_len, y_len):
pass
def get_from_mask(self, maske):
pass
class SCC_Lattice(Lattice):
def __init__(self, x_len, y_len):
x = np.arange(x_len) * 5
y = np.arange(x_len) * 5
self.X, self.Y = np.meshgrid(x, y)
def get_from_mask(self, maske):
return self.X, self.Y
class VO2_Lattice(Lattice):
base_a_m = 5.75
base_b_m = 4.5
base_c_m = 5.38
base_c_r = 2.856
base_b_r = 4.554
base_a_r = base_b_r
alpha_m = 122.64 # degree
def _mono_2_rutile(self, c_m, a_m):
a_r = np.cos(deg_2_rad(self.alpha_m - 90)) * c_m * self.base_c_m
c_r = (a_m) * self.base_a_m + \
np.sin(deg_2_rad(self.alpha_m - 90)) * c_m * self.base_c_m
return a_r, c_r
def _get_rutile(self, X, Y):
self.atom_x_rut = X * self.base_c_r + \
np.mod(Y, 4) * 0.5 * self.base_c_r
self.atom_y_rut = Y * 0.5 * self.base_a_r
def _get_mono(self, X, Y):
offset_a_m = 0.25 - 0.23947
offset_c_m = 0.02646
offset_a_r, offset_c_r = self.mono_2_rutile(offset_c_m, offset_a_m)
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
self.atom_x_mono = offset_a_r + X * \
self.base_c_r + np.mod(Y, 4) * 0.5 * self.base_c_r
self.atom_x_mono[np.mod(X, 2) == 0] -= 2 * offset_a_r
self.atom_y_mono = offset_c_r + 0.5 * Y * self.base_a_r
self.atom_y_mono[np.mod(X, 2) == 0] -= 2 * offset_c_r
def _generate_vec(self, x_len: int, y_len: int):
x = np.arange(x_len)
y = np.arange(y_len)
X, Y = np.meshgrid(x, y)
X[np.mod(Y, 4) == 3] = X[np.mod(Y, 4) == 3] - 1
X[np.mod(Y, 4) == 2] = X[np.mod(Y, 4) == 2] - 1
assert np.mod(x.size, 2) == 0
assert np.mod(y.size, 2) == 0
return X, Y
def __init__(self, x_len: int, y_len: int):
X, Y = self._generate_vec(x_len * 2, y_len * 2)
self._get_mono(X, Y)
self._get_rutile(X, Y)
def get_from_mask(self, maske: np.array):
inplace_pos_x = np.zeros_like(self.atom_x_mono)
inplace_pos_y = np.zeros_like(self.atom_x_mono)
mask = np.empty_like(self.atom_x_mono, dtype=bool)
mask[0::2, 0::2] = maske
mask[1::2, 0::2] = maske
mask[0::2, 1::2] = maske
mask[1::2, 1::2] = maske
inplace_pos_x[mask] = self.atom_x_rut[mask]
inplace_pos_y[mask] = self.atom_y_rut[mask]
mask = np.invert(mask)
inplace_pos_x[mask] = self.atom_x_mono[mask]
inplace_pos_y[mask] = self.atom_y_mono[mask]
return inplace_pos_x, inplace_pos_y

394
2d_fourie/main.py Normal file
View File

@ -0,0 +1,394 @@
from lattices import SCC_Lattice
import numpy as np
import matplotlib.pyplot as plt
import scipy.fftpack as sfft
import matplotlib.patches as patches
import matplotlib
import scipy
import tqdm
class SpinImage:
resolution = 0.1
def __init__(self, x_pos, y_pos):
self.length_x = np.max(x_pos) + self.resolution
self.length_y = np.max(y_pos) + self.resolution
self.img = self.image_from_pos(x_pos, y_pos)
def image_from_pos(self, pos_x, pos_y):
x_ind = np.arange(0, self.length_x, self.resolution) # angstrom
y_ind = np.arange(0, self.length_y, self.resolution) # angstrom
img = np.zeros((x_ind.size, y_ind.size))
xind = np.searchsorted(x_ind, pos_x)
yind = np.searchsorted(y_ind, pos_y)
img[xind, yind] = 1
return img
def fft(self):
Z_fft = sfft.fft2(self.img)
Z_shift = sfft.fftshift(Z_fft)
fft_freqx = sfft.fftfreq(self.img.shape[0], self.resolution)
fft_freqy = sfft.fftfreq(self.img.shape[1], self.resolution)
fft_freqx_clean = sfft.fftshift(fft_freqx)
fft_freqy_clean = sfft.fftshift(fft_freqy)
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
def pad_it_square(self, additional_pad=0):
h = self.img.shape[0]
w = self.img.shape[1]
print(h, w)
xx = np.maximum(h, w) + 2 * additional_pad
yy = xx
self.length_x = xx * self.resolution
self.length_y = yy * self.resolution
print("Pad to: ", xx, yy)
a = (xx - h) // 2
aa = xx - a - h
b = (yy - w) // 2
bb = yy - b - w
self.img = np.pad(self.img, pad_width=(
(a, aa), (b, bb)), mode="constant")
def gaussian(self, sigma):
x = np.arange(-self.length_x/2,
self.length_x/2, self.resolution)
y = np.arange(-self.length_y/2,
self.length_y/2, self.resolution)
X, Y = np.meshgrid(x, y)
z = (
1 / (2 * np.pi * sigma * sigma)
* np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
)
self.img = np.multiply(self.img, z.T)
def plot(self, ax, scale=None):
if scale is None:
ax.imshow(self.img)
else:
quad = np.ones((int(scale/self.resolution),
int(scale/self.resolution)))
img = scipy.signal.convolve2d(self.img, quad)
ax.imshow(img)
def blur(self, sigma):
self.img = scipy.ndimage.gaussian_filter(self.img, sigma)
def plot(freqx, freqy, intens, ax_log=None, ax_lin=None):
#point_x, point_y = reci_rutile()
# for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py, "r")
# ax.add_patch(rect)
# ax.text(
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
# )
#point_x, point_y = reci_mono()
# for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py, "b")
# ax.add_patch(rect)
# ax.text(
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
# )
if ax_log:
t = ax_log.imshow(
intens,
extent=(np.min(freqx), np.max(freqx),
np.min(freqy), np.max(freqy)),
norm=matplotlib.colors.LogNorm(),
cmap="viridis"
)
plt.colorbar(t)
if ax_lin:
t = ax_lin.imshow(
intens,
extent=(np.min(freqx), np.max(freqx),
np.min(freqy), np.max(freqy)),
cmap="viridis"
)
plt.colorbar(t)
def test_square():
lat = SCC_Lattice(300, 300)
si = SpinImage(*lat.get_from_mask(None))
fig, axs = plt.subplots(2, 2)
si.pad_it_square(10)
si.plot(axs[0, 0], 2)
si.gaussian(300)
# si.blur(3)
si.plot(axs[0, 1], 2)
plt.pause(0.1)
fx, fy, intens = si.fft()
plot(fx, fy, intens, axs[1, 0], axs[1, 1])
print("Done")
plt.show()
if __name__ == "__main__":
test_square()
# def test_lattice():
# lat = VO2_Lattice(10, 10)
# maske = np.zeros((10, 10), dtype=bool)
# x, y = lat.get_from_mask(maske)
#
# plt.scatter(x, y)
# maske = np.invert(maske)
# x, y = lat.get_from_mask(maske)
# plt.scatter(x, y)
#
# maske[:3, :5] = False
# x, y = lat.get_from_mask(maske)
# plt.scatter(x, y)
# plt.show()
#
#
# self.resolution = 0.1
# CMAP = "Greys"
#
#
# def test_img():
# lat = VO2_Lattice(10, 10)
# maske = np.ones((10, 10), dtype=bool)
# x, y = lat.get_from_mask(maske)
# img = image_from_pos(x, y)
# plt.imshow(img.T, origin="lower", extent=(0, np.max(x), 0, np.max(y)))
# plt.scatter(x, y)
# plt.show()
#
#
# def gaussian(img):
# x = np.arange(-self.resolution * img.shape[0]/2,
# self.resolution * img.shape[0]/2, self.resolution)
# y = np.arange(-self.resolution * img.shape[1]/2,
# self.resolution * img.shape[1]/2, self.resolution)
# X, Y = np.meshgrid(x, y)
# sigma = self.resolution * img.shape[0] / 10
# print("Sigma: ", sigma)
# z = (
# 1 / (2 * np.pi * sigma * sigma)
# * np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
# )
# return np.multiply(img, z.T)
#
#
# def rect_at_point(x, y, color):
# length_2 = 0.08
# rect = patches.Rectangle(
# (x - length_2, y - length_2),
# 2 * length_2,
# 2 * length_2,
# linewidth=1,
# edgecolor=color,
# facecolor="none",
# )
# return rect
#
#
# def reci_rutile():
# x = np.arange(-2, 3)
# y = np.arange(-2, 3)
# X, Y = np.meshgrid(x, y)
# return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
#
#
# def reci_mono():
# x, y = reci_rutile()
# return x + 0.1083, y + 0.1719
#
#
# def draw_big_val_rect(img, x, y, x_index, y_index):
# length_2 = 0.08
# pos_x_lower = x - length_2
# pos_x_upper = x + length_2
#
# pos_y_lower = y - length_2
# pos_y_upper = y + length_2
# x_lower = np.searchsorted(x_index, pos_x_lower)
# x_upper = np.searchsorted(x_index, pos_x_upper)
# y_lower = np.searchsorted(y_index, pos_y_lower)
# y_upper = np.searchsorted(y_index, pos_y_upper)
#
# img[y_lower:y_upper, x_lower:x_upper] = 1e4
# return img
#
#
# def extract_rect(img, x, y, x_index, y_index):
# length_2 = 0.08
#
# pos_x_lower = x - length_2
# pos_x_upper = x + length_2
#
# pos_y_lower = y - length_2
# pos_y_upper = y + length_2
#
# x_lower = np.searchsorted(x_index, pos_x_lower)
# x_upper = np.searchsorted(x_index, pos_x_upper)
#
# y_lower = np.searchsorted(y_index, pos_y_lower)
# y_upper = np.searchsorted(y_index, pos_y_upper)
#
# # fix different number of spins possible
# if x_upper - x_lower < 10:
# x_upper += 1
# if y_upper - y_lower < 10:
# y_upper += 1
#
# return img[y_lower:y_upper, x_lower:x_upper]
#
#
# def extract_peaks(freqx, freqy, intens):
# rutile = []
# point_x, point_y = reci_rutile()
# for px, py in zip(point_x, point_y):
# rutile.append(reduce(extract_rect(intens, px, py, freqx, freqy)))
#
# mono = []
# point_x, point_y = reci_mono()
# for px, py in zip(point_x, point_y):
# mono.append(reduce(extract_rect(intens, px, py, freqx, freqy)))
# return rutile, mono
#
#
# def plot(ax, freqx, freqy, intens):
# point_x, point_y = reci_rutile()
# for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py, "r")
# ax.add_patch(rect)
# ax.text(
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
# )
#
# point_x, point_y = reci_mono()
# for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py, "b")
# ax.add_patch(rect)
# ax.text(
# px, py, f"{reduce(extract_rect(intens, px, py, freqx, freqy)):2.2}", clip_on=True
# )
# ax.imshow(
# intens,
# extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy)),
# norm=matplotlib.colors.LogNorm(),
# cmap="Greys"
# )
#
#
# def test_all():
# LEN = 100
# SIZE = 60 * LEN + 1
# quad = np.ones((3, 3))
#
# fig, ax = plt.subplots(1, 3)
#
# lat = VO2_Lattice(LEN, LEN)
# maske = np.ones((LEN, LEN), dtype=bool)
# x, y = lat.get_from_mask(maske)
# img = image_from_pos(x, y)
# img = padding(img, SIZE, SIZE)
# #img = scipy.signal.convolve2d(img, quad)
# img = gaussian(img)
# freqx, freqy, intens_rutile = fft(img)
#
# img = scipy.signal.convolve2d(img, quad)
# ax[0].imshow(img)
#
# maske = np.zeros((LEN, LEN), dtype=bool)
# x, y = lat.get_from_mask(maske)
# img = image_from_pos(x, y)
# img = padding(img, SIZE, SIZE)
# img = gaussian(img)
# freqx, freqy, intens_mono = fft(img)
#
# img = scipy.signal.convolve2d(img, quad)
# ax[2].imshow(img)
#
# maske = np.zeros((LEN, LEN), dtype=bool)
# ind = np.arange(LEN*LEN)
# np.random.shuffle(ind)
# ind = np.unravel_index(ind[:int(LEN*LEN/2)], (LEN, LEN))
# maske[ind] = True
# x, y = lat.get_from_mask(maske)
# img = image_from_pos(x, y)
# img = padding(img, SIZE, SIZE)
# img = gaussian(img)
# freqx, freqy, intens_mono = fft(img)
#
# img = scipy.signal.convolve2d(img, quad)
# ax[1].imshow(img)
#
# print(np.mean(maske))
# x, y = lat.get_from_mask(maske)
# img = image_from_pos(x, y)
# img = padding(img, SIZE, SIZE)
# img = gaussian(img)
# freqx, freqy, intens_50 = fft(img)
#
# fig, axs = plt.subplots(1, 3)
# plot(axs[0], freqx=freqx, freqy=freqy, intens=intens_rutile)
# plot(axs[2], freqx=freqx, freqy=freqy, intens=intens_mono)
# plot(axs[1], freqx=freqx, freqy=freqy, intens=intens_50)
# axs[0].set_title("Rutile")
# axs[2].set_title("Mono")
# axs[1].set_title("50/50")
#
# for ax in axs:
# ax.set_xlim(-1.0, 1.0)
# ax.set_ylim(-1.0, 1.0)
#
#
# def eval(maske, lat, LEN):
# x, y = lat.get_from_mask(maske)
# SIZE = 60 * LEN + 1
# img = image_from_pos(x, y)
# img = padding(img, SIZE, SIZE)
# img = gaussian(img)
# freqx, freqy, intens = fft(img)
# return extract_peaks(freqx, freqy, intens)
#
#
# def reduce(arr):
# arr = np.array(arr)
# arr = arr.flatten()
# return np.sum(arr[np.argpartition(arr, -8)[-8:]])
#
#
# def main():
# LEN = 80
# lat = VO2_Lattice(LEN, LEN)
# maske = np.zeros((LEN, LEN), dtype=bool)
# ind = np.arange(LEN*LEN)
# np.random.shuffle(ind)
# percentage = []
# rutile = []
# monoclinic = []
# counter = 0
# for i in tqdm.tqdm(ind):
# i_unravel = np.unravel_index(i, (LEN, LEN))
# maske[i_unravel] = True
# if np.mod(counter, 300) == 0:
# rut, mono = eval(maske, lat, LEN)
# percentage.append(np.mean(maske))
# rutile.append(reduce(rut))
# monoclinic.append(reduce(mono))
# counter += 1
#
# print(len(percentage), len(mono), len(rutile))
# print(mono)
# plt.figure()
# plt.scatter(percentage, np.array(monoclinic)/monoclinic[0], label="mono")
# plt.scatter(percentage, np.array(rutile)/rutile[0], label="rut")
# plt.legend()
#
#
# if __name__ == "__main__":
# test_all()
# # main()
# plt.show()

316
cal.py
View File

@ -1,316 +0,0 @@
import numpy as np
import matplotlib.pyplot as plt
import scipy.fftpack as sfft
import matplotlib.patches as patches
import matplotlib
def deg_2_rad(winkel):
return winkel / 180.0 * np.pi
# all units in angstrom
base_a_m = 5.75
base_b_m = 4.5
base_c_m = 5.38
base_c_r = 2.856
base_b_r = 4.554
base_a_r = base_b_r
alpha_m = 122.64 # degree
def mono_2_rutile(c_m, a_m):
a_r = np.cos(deg_2_rad(alpha_m - 90)) * c_m * base_c_m
c_r = (a_m) * base_a_m + np.sin(deg_2_rad(alpha_m - 90)) * c_m * base_c_m
return a_r, c_r
class Lattice:
def _get_rutile(self, X, Y):
self.atom_x_rut = X * base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
self.atom_y_rut = Y * 0.5 * base_a_r
def _get_mono(self, X, Y):
offset_a_m = 0.25 - 0.23947
offset_c_m = 0.02646
offset_a_r, offset_c_r = mono_2_rutile(offset_c_m, offset_a_m)
print("A_r: ", offset_a_r, "C_r: ", offset_c_r)
self.atom_x_mono = offset_a_r + X * base_c_r + np.mod(Y, 4) * 0.5 * base_c_r
self.atom_x_mono[np.mod(X, 2) == 0] -= 2 * offset_a_r
self.atom_y_mono = offset_c_r + 0.5 * Y * base_a_r
self.atom_y_mono[np.mod(X, 2) == 0] -= 2 * offset_c_r
def _generate_vec(self, x_len: int, y_len: int):
x = np.arange(x_len)
y = np.arange(y_len)
X, Y = np.meshgrid(x, y)
X[np.mod(Y, 4) == 3] = X[np.mod(Y, 4) == 3] - 1
X[np.mod(Y, 4) == 2] = X[np.mod(Y, 4) == 2] - 1
assert np.mod(x.size, 2) == 0
assert np.mod(y.size, 2) == 0
return X, Y
def __init__(self, x_len: int, y_len: int):
X, Y = self._generate_vec(x_len * 2, y_len * 2)
self._get_mono(X, Y)
self._get_rutile(X, Y)
def get_from_mask(self, maske: np.array, inplace_pos_x=None, inplace_pos_y=None):
if inplace_pos_x is None:
inplace_pos_x = np.zeros_like(self.atom_x_mono)
if inplace_pos_y is None:
inplace_pos_y = np.zeros_like(self.atom_x_mono)
mask = np.empty_like(self.atom_x_mono, dtype=bool)
print(mask.shape, maske.shape)
mask[0::2, 0::2] = maske
mask[1::2, 0::2] = maske
mask[0::2, 1::2] = maske
mask[1::2, 1::2] = maske
inplace_pos_x[mask] = self.atom_x_rut[mask]
inplace_pos_y[mask] = self.atom_y_rut[mask]
mask = np.invert(mask)
inplace_pos_x[mask] = self.atom_x_mono[mask]
inplace_pos_y[mask] = self.atom_y_mono[mask]
return inplace_pos_x, inplace_pos_y
def test_lattice():
lat = Lattice(10, 10)
maske = np.zeros((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
plt.scatter(x, y)
maske = np.invert(maske)
x, y = lat.get_from_mask(maske)
plt.scatter(x, y)
maske[:3, :5] = False
x, y = lat.get_from_mask(maske)
plt.scatter(x, y)
plt.show()
RESOLUTION = 0.1
CMAP = "Greys"
def image_from_pos(pos_x, pos_y):
length_x = np.max(pos_x) + RESOLUTION
length_y = np.max(pos_y) + RESOLUTION
x_ind = np.arange(0, length_x, RESOLUTION) # angstrom
y_ind = np.arange(0, length_y, RESOLUTION) # angstrom
img = np.zeros((x_ind.size, y_ind.size))
xind = np.searchsorted(x_ind, pos_x)
yind = np.searchsorted(y_ind, pos_y)
img[xind, yind] = 1
return img
def test_img():
lat = Lattice(10, 10)
maske = np.ones((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
img = image_from_pos(x, y)
plt.imshow(img.T, origin="lower", extent=(0, np.max(x), 0, np.max(y)))
plt.scatter(x, y)
plt.show()
def fft(img):
Z_fft = sfft.fft2(img)
Z_shift = sfft.fftshift(Z_fft)
fft_freqx = sfft.fftfreq(img.shape[0], RESOLUTION)
fft_freqy = sfft.fftfreq(img.shape[1], RESOLUTION)
fft_freqx_clean = sfft.fftshift(fft_freqx)
fft_freqy_clean = sfft.fftshift(fft_freqy)
return fft_freqx_clean, fft_freqy_clean, np.abs(Z_shift) ** 2
def gaussian(img):
ratio = img.shape[0] / img.shape[1]
x = np.linspace(-ratio, ratio, img.shape[0])
y = np.linspace(-1, 1, img.shape[1])
X, Y = np.meshgrid(x, y)
sigma = 0.5
z = (
1
/ (2 * np.pi * sigma * sigma)
* np.exp(-(X**2 / (2 * sigma**2) + Y**2 / (2 * sigma**2)))
)
return np.multiply(img, z.T)
def padding(array, xx, yy):
"""
:param array: numpy array
:param xx: desired height
:param yy: desirex width
:return: padded array
"""
h = array.shape[0]
w = array.shape[1]
a = (xx - h) // 2
aa = xx - a - h
b = (yy - w) // 2
bb = yy - b - w
return np.pad(array, pad_width=((a, aa), (b, bb)), mode="constant")
def rect_at_point(x, y, color):
length_2 = 0.08
rect = patches.Rectangle(
(x - length_2, y - length_2),
2 * length_2,
2 * length_2,
linewidth=1,
edgecolor=color,
facecolor="none",
)
return rect
def reci_rutile():
x = np.arange(-2, 3)
y = np.arange(-2, 3)
X, Y = np.meshgrid(x, y)
return (X * 0.22 + Y * 0.44).flatten(), (X * 0.349).flatten()
def reci_mono():
x, y = reci_rutile()
return x + 0.1083, y + 0.1719
def draw_big_val_rect(img, x, y, x_index, y_index):
length_2 = 0.08
pos_x_lower = x - length_2
pos_x_upper = x + length_2
pos_y_lower = y - length_2
pos_y_upper = y + length_2
x_lower = np.searchsorted(x_index, pos_x_lower)
x_upper = np.searchsorted(x_index, pos_x_upper)
y_lower = np.searchsorted(y_index, pos_y_lower)
y_upper = np.searchsorted(y_index, pos_y_upper)
img[y_lower:y_upper, x_lower:x_upper] = 1e4
return img
def extract_rect(img, x, y, x_index, y_index):
length_2 = 0.08
pos_x_lower = x - length_2
pos_x_upper = x + length_2
pos_y_lower = y - length_2
pos_y_upper = y + length_2
x_lower = np.searchsorted(x_index, pos_x_lower)
x_upper = np.searchsorted(x_index, pos_x_upper)
y_lower = np.searchsorted(y_index, pos_y_lower)
y_upper = np.searchsorted(y_index, pos_y_upper)
return img[y_lower:y_upper, x_lower:x_upper]
def main():
FFT_KWARGS = {"norm": matplotlib.colors.LogNorm(vmin=1), "cmap": "Greys"}
IMSHOW_WARGS = {"cmap": "Greys"}
SIZE = 601
lat = Lattice(10, 10)
maske = np.ones((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
img = image_from_pos(x, y)
img = padding(img, SIZE, SIZE)
fig, [axs, axs2] = plt.subplots(2, 3)
axs[0].imshow(img, **IMSHOW_WARGS)
img = gaussian(img)
axs[1].imshow(img, **IMSHOW_WARGS)
plt.pause(0.1)
freqx, freqy, intens = fft(img)
axs[2].imshow(
intens,
extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy)),
**FFT_KWARGS,
)
intens_rut = intens
maske = np.zeros((10, 10), dtype=bool)
x, y = lat.get_from_mask(maske)
img = image_from_pos(x, y)
img = padding(img, SIZE, SIZE)
axs2[0].imshow(img, **IMSHOW_WARGS)
img = gaussian(img)
axs2[1].imshow(img, **IMSHOW_WARGS)
plt.pause(0.1)
freqx, freqy, intens = fft(img)
axs2[2].imshow(
intens,
extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy)),
**FFT_KWARGS,
)
# Create a Rectangle patch
# Add the patch to the Axes
point_x, point_y = reci_rutile()
for px, py in zip(point_x, point_y):
rect = rect_at_point(px, py, "r")
axs[2].add_patch(rect)
axs[2].text(
px, py, f"{np.sum(extract_rect(intens_rut, px, py, freqx, freqy)):0.2}"
)
rect = rect_at_point(px, py, "r")
axs2[2].add_patch(rect)
axs2[2].text(
px, py, f"{np.sum(extract_rect(intens, px, py, freqx, freqy)):0.2}"
)
point_x, point_y = reci_mono()
for px, py in zip(point_x, point_y):
# rect = rect_at_point(px, py,"b")
# axs[2].add_patch(rect)
rect = rect_at_point(px, py, "b")
axs2[2].add_patch(rect)
axs2[2].text(
px, py, f"{np.sum(extract_rect(intens, px, py, freqx, freqy)):0.2}"
)
axs[2].set_xlim(-1.0, 1.0)
axs[2].set_ylim(-1.0, 1.0)
axs2[2].set_xlim(-1.0, 1.0)
axs2[2].set_ylim(-1.0, 1.0)
plt.figure()
diff = intens_rut - intens
plt.imshow(
diff, extent=(np.min(freqx), np.max(freqx), np.min(freqy), np.max(freqy))
)
plt.xlim(-1.0, 1.0)
plt.ylim(-1.0, 1.0)
plt.show()
if __name__ == "__main__":
main()