finally hopefully
This commit is contained in:
parent
a015542b03
commit
3c3ff46d21
@ -36,7 +36,6 @@ def merge(files):
|
|||||||
plt.plot(out[2, :], "g")
|
plt.plot(out[2, :], "g")
|
||||||
|
|
||||||
all = sum(merge)
|
all = sum(merge)
|
||||||
|
|
||||||
summe = np.max(np.sum(all, axis=0))
|
summe = np.max(np.sum(all, axis=0))
|
||||||
all = all / summe
|
all = all / summe
|
||||||
|
|
||||||
@ -45,7 +44,6 @@ def merge(files):
|
|||||||
plt.plot(all[2, :], "k")
|
plt.plot(all[2, :], "k")
|
||||||
percentage = 1-percentage
|
percentage = 1-percentage
|
||||||
return percentage, all
|
return percentage, all
|
||||||
>>>>>>> e1a921c2eb7fb8f51d860e28b81ff3a41af21abc
|
|
||||||
|
|
||||||
|
|
||||||
def debug(percentage, out):
|
def debug(percentage, out):
|
||||||
@ -87,15 +85,10 @@ def time_scale(p, o):
|
|||||||
mono_perc = mono_perc - np.min(mono_perc)
|
mono_perc = mono_perc - np.min(mono_perc)
|
||||||
mono_perc /= np.max(mono_perc)
|
mono_perc /= np.max(mono_perc)
|
||||||
|
|
||||||
<<<<<<< HEAD
|
|
||||||
cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1])
|
|
||||||
cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1])
|
|
||||||
=======
|
|
||||||
# cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1])
|
# cs_rut = ip.CubicSpline(p[::-1], rut_perc[::-1])
|
||||||
# cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1])
|
# cs_mono = ip.CubicSpline(p[::-1], mono_perc[::-1])
|
||||||
cs_rut = ip.interp1d(p[::-1], rut_perc[::-1])
|
cs_rut = ip.interp1d(p[::-1], rut_perc[::-1])
|
||||||
cs_mono = ip.interp1d(p[::-1], mono_perc[::-1])
|
cs_mono = ip.interp1d(p[::-1], mono_perc[::-1])
|
||||||
>>>>>>> e1a921c2eb7fb8f51d860e28b81ff3a41af21abc
|
|
||||||
|
|
||||||
plt.figure()
|
plt.figure()
|
||||||
ph = np.linspace(0.01, 0.99, 100)
|
ph = np.linspace(0.01, 0.99, 100)
|
||||||
@ -118,6 +111,7 @@ def time_scale(p, o):
|
|||||||
plt.savefig("timescale.png")
|
plt.savefig("timescale.png")
|
||||||
plt.savefig("timescale.pdf")
|
plt.savefig("timescale.pdf")
|
||||||
|
|
||||||
|
|
||||||
def read_file(file):
|
def read_file(file):
|
||||||
files = np.load("./merged.npz")
|
files = np.load("./merged.npz")
|
||||||
p = files["p"]
|
p = files["p"]
|
||||||
@ -127,13 +121,8 @@ def read_file(file):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
p, o = merge(sys.argv[1:])
|
p, o = merge(sys.argv[1:])
|
||||||
<<<<<<< HEAD
|
|
||||||
np.savez("merged.npz", p=p, o=o)
|
np.savez("merged.npz", p=p, o=o)
|
||||||
# eval_data_print(f)
|
# eval_data_print(f)
|
||||||
stacked_plot(p, o)
|
stacked_plot(p, o)
|
||||||
=======
|
|
||||||
>>>>>>> e1a921c2eb7fb8f51d860e28b81ff3a41af21abc
|
|
||||||
# debug(p, o)
|
|
||||||
stacked_plot(p, o)
|
|
||||||
time_scale(p, o)
|
time_scale(p, o)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
@ -79,8 +79,8 @@ class Rect_Evaluator(Evaluator):
|
|||||||
new_eval_points = np.arange(len(self.eval_points))
|
new_eval_points = np.arange(len(self.eval_points))
|
||||||
mask = self.mask.copy()
|
mask = self.mask.copy()
|
||||||
for nc, ev_points in zip(new_eval_points, self.eval_points):
|
for nc, ev_points in zip(new_eval_points, self.eval_points):
|
||||||
maske_low = np.min(ev_points) >= self.mask
|
maske_low = np.min(ev_points) <= self.mask
|
||||||
maske_high = np.max(ev_points) <= self.mask
|
maske_high = np.max(ev_points) >= self.mask
|
||||||
mask[np.logical_and(maske_high, maske_low)] = nc
|
mask[np.logical_and(maske_high, maske_low)] = nc
|
||||||
|
|
||||||
plt.figure()
|
plt.figure()
|
||||||
@ -103,65 +103,3 @@ class Rect_Evaluator(Evaluator):
|
|||||||
count += 1
|
count += 1
|
||||||
return mask
|
return mask
|
||||||
|
|
||||||
#
|
|
||||||
# def main():
|
|
||||||
# np.random.seed(10)
|
|
||||||
# points = (np.random.rand(100, 2)-0.5) * 2
|
|
||||||
# voro = Voronoi_Evaluator(points, [[1],[2]])
|
|
||||||
# rect = Rect_Evaluator(points, [[1], [2]])
|
|
||||||
# Z = np.ones((1000, 1000))
|
|
||||||
# img = Image_Wrapper(Z, -5, .01, -5, .01)
|
|
||||||
# voro.extract(img)
|
|
||||||
# rect.extract(img)
|
|
||||||
#
|
|
||||||
# plt.scatter(points[[1], 0], points[[1], 1])
|
|
||||||
# plt.scatter(points[[2], 0], points[[2], 1])
|
|
||||||
# plt.imshow(img.img, extent=img.ext(), origin="lower")
|
|
||||||
# #plt.imshow(img.img, origin="lower")
|
|
||||||
# plt.show()
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# if __name__ == "__main__":
|
|
||||||
# main()
|
|
||||||
# class Voronoi_Evaluator(Evaluator):
|
|
||||||
# def __init__(self, list_points):
|
|
||||||
# points = np.concatenate(list_points, axis=0)
|
|
||||||
# self.eval_points = []
|
|
||||||
# start = 0
|
|
||||||
# for l in list_points:
|
|
||||||
# stop = l.shape[0]
|
|
||||||
# self.eval_points.append(np.arange(start, start + stop))
|
|
||||||
# start += stop
|
|
||||||
# self.vor = Voronoi(points)
|
|
||||||
#
|
|
||||||
# @persist_to_file("cache_merge_voro")
|
|
||||||
# def merge_mask_helper(self):
|
|
||||||
# new_eval_points = np.arange(len(self.eval_points))
|
|
||||||
# mask = self.mask
|
|
||||||
# for nc, ev_points in zip(new_eval_points, self.eval_points):
|
|
||||||
# for num in ev_points:
|
|
||||||
# mask[self.mask == num] = nc
|
|
||||||
# return mask
|
|
||||||
#
|
|
||||||
# @persist_to_file("cache_voro")
|
|
||||||
# def gen_mask_helper(self, img: Image_Wrapper):
|
|
||||||
# mask = np.full_like(img.img, -1)
|
|
||||||
#
|
|
||||||
# counter = -1
|
|
||||||
# region_mask = self.vor.point_region
|
|
||||||
# for i in np.array(self.vor.regions, dtype=list)[region_mask]:
|
|
||||||
# counter += 1
|
|
||||||
# if -1 in i:
|
|
||||||
# continue
|
|
||||||
# if len(i) == 0:
|
|
||||||
# continue
|
|
||||||
# pts = self.vor.vertices[i]
|
|
||||||
# pts = np.stack(img.val2pos(
|
|
||||||
# pts[:, 0], pts[:, 1])).astype(np.int32).T
|
|
||||||
# if np.any(pts < 0):
|
|
||||||
# continue
|
|
||||||
# mask_2 = np.zeros_like(img.img)
|
|
||||||
# cv2.fillConvexPoly(mask_2, pts, 1)
|
|
||||||
# mask_2 = mask_2 > 0 # To convert to Boolean
|
|
||||||
# mask[mask_2] = counter
|
|
||||||
# return mask
|
|
||||||
|
Loading…
Reference in New Issue
Block a user